2 research outputs found

    Reaction Mechanism of Adenylyltransferase DrrA from <i>Legionella pneumophila</i> Elucidated by Time-Resolved Fourier Transform Infrared Spectroscopy

    No full text
    Modulation of the function of small GTPases that regulate vesicular trafficking is a strategy employed by several human pathogens. <i>Legionella pneumophila</i> infects lung macrophages and injects a plethora of different proteins into its host cell. Among these is DrrA/SidM, which catalyzes stable adenylylation of Rab1b, a regulator of endoplasmatic reticulum to Golgi trafficking, and thereby alters the function and interactions of this small GTPase. We employed time-resolved FTIR-spectroscopy to monitor the DrrA-catalyzed AMP-transfer to Tyr77 of Rab1b. A transient complex between DrrA, adenylylated Rab1b, and the pyrophosphate byproduct was resolved, allowing us to analyze the interactions at the active site. Combination of isotopic labeling and site-directed mutagenesis allowed us to derive the catalytic mechanism of DrrA from the FTIR difference spectra. DrrA shares crucial residues in the ATP-binding pocket with similar AMP-transferring enzymes such as glutamine synthetase adenylyltransferase or kanamycin nucleotidyltransferase, but provides the complete active site on a single subunit. We determined that Asp112 of DrrA functions as the catalytic base for deprotonation of Tyr77 of Rab1b to enable nucleophilic attack on the ATP. The study provides detailed understanding of the <i>Legionella pneumophila</i> protein DrrA and of AMP-transfer reactions in general

    Unraveling the Phosphocholination Mechanism of the <i>Legionella pneumophila</i> Enzyme AnkX

    No full text
    The intracellular pathogen <i>Legionella pneumophila</i> infects lung macrophages and injects numerous effector proteins into the host cell to establish a vacuole for proliferation. The necessary interference with vesicular trafficking of the host is achieved by modulation of the function of Rab GTPases. The effector protein AnkX chemically modifies Rab1b and Rab35 by covalent phosphocholination of serine or threonine residues using CDP-choline as a donor. So far, the phosphoryl transfer mechanism and the relevance of observed autophosphocholination of AnkX remained disputable. We designed tailored caged compounds to make this type of enzymatic reaction accessible for time-resolved Fourier transform infrared difference spectroscopy. By combining spectroscopic and biochemical methods, we determined that full length AnkX is autophosphocholinated at Ser521, Thr620, and Thr943. However, autophosphocholination loses specificity for these sites in shortened constructs and does not appear to be relevant for the catalysis of the phosphoryl transfer. In contrast, transient phosphocholination of His229 in the conserved catalytic motif might exist as a short-lived reaction intermediate. Upon substrate binding, His229 is deprotonated and locked in this state, being rendered capable of a nucleophilic attack on the pyrophosphate moiety of the substrate. The proton that originated from His229 is transferred to a nearby carboxylic acid residue. Thus, our combined findings support a ping-pong mechanism involving phosphocholination of His229 and subsequent transfer of phosphocholine to the Rab GTPase. Our approach can be extended to the investigation of further nucleotidyl transfer reactions, which are currently of reemerging interest in regulatory pathways of hostā€“pathogen interactions
    corecore