28 research outputs found

    Influence of the ambient temperature on water and diiodomethane contact angle with quartz surface

    Get PDF
    Wettability of solids is a key phenomenon in many processes. One should mentioned those which accompany us in our everyday life i.e. washing or cementing as well as those applied in industry e.g. flotation of minerals. Value of the contact angles are affected by many factors. One of them is temperature. In this paper monocrystaline quartz was used in the investigations which were carried out in the range 5−50°C with the step every 5°C. As follows the value of the contact angle of both water and diiodomethane changes with the increasing temperature. The change of its value for water is much larger than in case of another liquids of apolar character. Using Chibowski approach the apparent surface free energy was calculated in two ways with and without correction about temperature change of the surface tension. The calculation show difference between both results. Taking into consideration another value of the surface tension should not be neglected even if measurements is taken at a temperature close to 20°C which is the standard in one in such measurements

    Apparent Surface Free Energy of Polymer/Paper Composite Material Treated by Air Plasma

    Get PDF
    Surface plasma treatment consists in changes of surface properties without changing internal properties. In this paper composite polymer/paper material is used for production of packaging in cosmetic industry. There are problems with bonding this material at the time of packaging production due to its properties. Composite surface was treated by air plasma for 1, 10, 20, and 30 s. The advancing and receding contact angles of water, formamide, and diiodomethane were measured using both treated and untreated samples. Apparent surface free energy was estimated using the hysteresis (CAH) and Van Oss, Good, Chaudhury approaches (LWAB). Surface roughness was investigated using optical profilometry and identification of after plasma treatment emerging chemical groups was made by means of the XPS (X-ray photoelectron spectroscopy) technique. After plasma treatment the values of contact angles decreased which is particularly evident for polar liquids. Apparent surface free energy increased compared to that of untreated samples. Changes of energy value are due to the electron-donor parameter of energy. This parameter increases as a result of adding polar groups at the time of surface plasma activation. Changes of surface properties are combination of increase of polar chemical functional groups, increase on the surface, and surface roughness increase

    Influence of Air Cold Plasma Modification on the Surface Properties of Paper Used for Packaging Production

    Get PDF
    In this study, the effect of air plasma on the surface properties of printed and coated cardboard was investigated. The material was activated by low-pressure cold plasma for 1, 10, 20, and 30 s. Wettability changes on the surface were examined by contact angle measurements using the sessile droplet technique. The differences in the surface free energy were calculated using the Lifshitz–van derWaals/acid–base and Contact Angle Hysteresis approaches. Optical profilometry was used for the surface roughness evaluation and an X-ray photoelectron spectroscopy analysis was performed to find changes in surface chemistry. Adhesive strength tests were carried out to estimate the adhesion changes after the material’s modification. It was found that the water and formamide contact angles increased after the plasma treatment while the diiodomethane contact angle did not change. As a result of the modification, the surface free energy also increased significantly and the surface roughness increased. The pull-off tests confirmed the improvement in the material’s surface properties. Moreover, it was demonstrated that the optimal effect can be obtained after just 10 s of the plasma process

    Comparison of contact angle measurement methods of liquids on metal alloys

    Get PDF
    The paper presents the studies of metal wettability using two methods: the sessile droplet and immersion ones. Based on the measured contact angles, there was calculated apparent surface free energy from the acidic–basic approach and the contact angle hysteresis. The advancing contact angles measured using the immersion method exhibit a little higher values than those measured by the sessile droplet method. The application of the immersion method leads to obtaining higher contact angle hysteresis. Both methods give different values of contact angles but they can be applied independently for estimation of metal surface wettability

    Influence of Air Cold Plasma Modification on the Surface Properties of Paper Used for Packaging Production

    No full text
    In this study, the effect of air plasma on the surface properties of printed and coated cardboard was investigated. The material was activated by low-pressure cold plasma for 1, 10, 20, and 30 s. Wettability changes on the surface were examined by contact angle measurements using the sessile droplet technique. The differences in the surface free energy were calculated using the Lifshitz–van der Waals/acid–base and Contact Angle Hysteresis approaches. Optical profilometry was used for the surface roughness evaluation and an X-ray photoelectron spectroscopy analysis was performed to find changes in surface chemistry. Adhesive strength tests were carried out to estimate the adhesion changes after the material’s modification. It was found that the water and formamide contact angles increased after the plasma treatment while the diiodomethane contact angle did not change. As a result of the modification, the surface free energy also increased significantly and the surface roughness increased. The pull-off tests confirmed the improvement in the material’s surface properties. Moreover, it was demonstrated that the optimal effect can be obtained after just 10 s of the plasma process

    Surface Properties of Plasma-Activated Chitosan Foils

    No full text
    Thin films of chitosan are often deposited on various surfaces to provide them with antiseptic properties. In the presented research, chitosan foils were obtained using two methods and treated with nitrogen plasma. The obtained materials were characterized by measuring the wettability of the test liquids, and the apparent surface free energy was calculated using the Tadmor equilibrium contact angles. The surface topography was characterized using optical profilometry and SEM. On the other hand, the effect of plasma on surface groups was investigated using the FTIR-ATR technique. Plasma activation of the surface increases the polarity of the surface. This is observed in the changed surface roughness and the share of functional groups on the surface

    Influence of Volume Drop on Surface Free Energy of Glass

    No full text
    The aim of the research was to determine how the drop size affects the contact angle values and determine its optimal size for further contact angle measurements and comparison of the contact angle values measured for three probe liquids (water, formamide, diiodomethane) on the glass surface using the: sessile drop and tilting plate methods. Next, using the measured contact angles, the total surface free energy and its components were determined from the van Oss et al. (Lifshitz-van der Waals acid- base component, LWAB), Owens-Wendt, Neumann and contact angle hysteresis (CAH) approaches. The studies showed, that drop size is very important for contact angle measurements and consequently, for surface free energy estimation

    Magnetic field effects on surfactants adsorption on the solid surface as regards of its wettability

    No full text
    The static magnetic field MF (0.44 T) effects on the adsorption of three surfactants: cationic bromide (DTAB) and hexadecyltrimethylammonium bromide (CTAB), and anionic sodium dodecylsulfate (SDS) from their 10-3 M solutions were studied on bare and low-temperature air plasma treated glass plates. The surface properties of the adsorbed surfactants layers were determined via the water advancing and receding contact angles measurements and then calculation of the apparent surface free energy. An optical profilometer was used to determine the structure and topography of the adsorbed layers. The DTAB and SDS concentrations were below their critical micelle concentration and that of CTAB very close to its cmc. The results showed that in the case of DTAB solution (much below its cmc) a small decrease in the contact angle appeared while in CTAB (close to its cmc) an increase in the contact angle value was observed if adsorbed in the MF presence. Quite good reproducibility of the contact angle values was obtained. This was not the case for the SDS solution where the contact angle values were scattered. The reason was that the anionic surfactant did not adsorb homogeneously on the negatively charged glass surface. The contact angles and the calculated values of the work of water spreading clearly show that MF influences the structure of the surfactant adsorbed layer which was also supported by the optical profilometry images
    corecore