31 research outputs found
Estrogen receptor beta expression in prostate adenocarcinoma
<p>Abstract</p> <p>Background</p> <p>Prostate cancer is the most commonly diagnosed cancer in men and the second leading cause of cancer death in men. Estrogen induction of cell proliferation is a crucial step in carcinogenesis of gynecologic target tissues, and there are many studies recently done, showing that prostate cancer growth is also influenced by estrogen. The characterization of estrogen receptor beta (ER-b) brought new insight into the mechanisms underlying estrogen signalling. In the present study, we investigated the expression of estrogen receptor-b (ER-b) in human prostate cancer tissues.</p> <p>Methods</p> <p>We selected 52 paraffin-embedded blocks of prostate needle biopsies in a cross-sectional study to determine frequency and rate of ER-b expression in different grades of prostate adenocarcinoma according to Gleason grading system. Immunohistochemical staining of tissue sections by monoclonal anti ER-b antibody was performed using an Envision method visualising system.</p> <p>Results</p> <p>ER-b expression was seen in tumoral cells of prostatic carcinoma in all 29 cases with low and intermediate tumors (100%) and 19 of 23 cases with high grade tumor (83%). Mean rate of ER-b expression in low & intermediate grade cancers was 68.41% (SD = 25.63) whereas high grade cancers showed 49.48% rate of expression (SD = 28.79).</p> <p>Conclusions</p> <p>ER-b expression is reduced in high grade prostate cancers compared to low & intermediate grade ones (<it>P </it>value 0.027).</p
An interactome-centered protein discovery approach reveals novel components involved in mitosome function and homeostasis in giardia lamblia
Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30–40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER) distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i) significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii) identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein translocation despite the massive divergence and reduction of protein import machinery in Giardia mitosomes
Measurements of hydrogen peroxide and formaldehyde exchange between the atmosphere and surface snow at Summit, Greenland
Tower-based measurements of hydrogen peroxide (H2O2) and formaldehyde (HCHO)exchange were performed above the snowpack of the Greenland ice sheet. H2O2 andHCHO fluxes were measured continuously between June 16 and July 7, 2000, at theSummit Environmental Observatory. The fluxes were determined using coilscrubber-aqueous phase fluorometry systems together with micrometeorologicaltechniques. Both compounds exhibit strong diel cycles in the observed concentrationsas well as in the fluxes with emission from the snow during the day and the eveningand deposition during the night. The averaged diel variations of the observed fluxeswere in the range of +1.3 · 10^13 molecules m^-2 s^-1 (deposition) and-1.6 · 10^13 molecules m^-2 s^-1 (emission) for H2O2 and +1.1 · 10^12molecules m^-2 s^-1 and -4.2 · 10^12 molecules m^-2 s^-1 for HCHO, while the netexchange per day for both compounds were much smaller. During the study period of22 days on average 0.8 (+4.6/-4.3) · 10^17 molecules m^-2 of H2O2 were depositedand 7.0 (+12.6/-12.2) · 10^16 molecules m^-2 of HCHO were emitted from the snowper day. A comparison with the inventory in the gas phase demonstrates that theexchange influences the diel variations in the boundary layer above snow covered areas.Flux measurements during and after the precipitation of new snow shows that less than16 % of the H2O2 and more than 25 % of the HCHO originally present in the new snowwere available for fast release to the ABL within hours after precipitation. This releasecan effectively disturb the normally observed diel variations of the exchange betweenthe surface snow and the atmosphere, thus perturbing also the diel variations ofcorresponding gas phase concentrations
Drought in Northern Italy: Long Earth Observation Time Series Reveal Snow Line Elevation to Be Several Hundred Meters Above Long-Term Average in 2022
The hydrological drought in Northern Italy in 2022 was, in large part, the consequence of a snow drought in the Italian Alps in the winter of 2021/22 and the resulting deficit of melt water runoff. In this communication, we assessed the snow-cover dynamics in nine Alpine Italian catchments using long time series of satellite-derived snow line elevation (SLE) measurements. We compared the SLE of the hydrological year 2021/22 to the long-term dynamics of 1985–2021. In early 2022, the SLE was located several hundred meters above the expected median values in all of the nine catchments. This resulted in deficits of snow-covered area of up to 83% in the Western Alps (catchment of Sesia, March 2022) and up to 61% in the Eastern Alps (Brenta, March 2022) compared to the long-term median. Although snow-cover data from optical satellite imagery do not contain information about snow depth and water content, in a preliminary qualitative analysis, the derived SLE dynamics show good agreement with the Standardized Snowpack Index (SSPI) which is based on the snow water equivalent (SWE). While the exact relationships between SLE, SWE, and runoff have to be explored further on the catchment basis, long-time series of SLE may have potential for use in drought early warning systems