3 research outputs found

    Performance of a Suspension Bridge with Active Vibration Dampers

    No full text
    Suspended structures that are used extensively in construction of motorway and pedestrian bridges allow bridging wide spans without having to install intermediate supports. Being less stiff in comparison to girder and arch bridges, suspension bridges require their dynamic properties to be controlled [1, 2]. This is a vital task when it comes to suspension bridges. Several engineering arrangements are available to control the dynamic properties of the structures [3]. This paper addresses the use of active dampers [4] installed on the tops of the towers as the means to control vibrations of a suspension bridge. To this end, a planar 3D model of suspension bridge was built using ANSYS software. The authors compared stress-strain behavior and dynamic properties of the models with and without active vibration dampers. In contrast to the initial model, the model of a bridge equipped with active dampers exhibits less displacement in all cross-sections. Thus, the displacements are reduced 1.7 times in the middle of the central span of suspended stiffening truss; 2.7 times in the middle of the end span; and displacements of the top of the bridge tower are 1.6 times less. The modal analysis has shown that in the model with active dampers the frequency of transverse vibrations at the tower tops has increased 1.9 times, while vertical vibrations have increased within 23%. Under maximum applied overpressure in the active damper, torsional vibrations of the structure have increased 2.4 times as compared to the initial model. The results obtained by the authors allow for the conclusion that active dampers are useful tools for controlling the dynamic properties of a suspension bridge

    Anmerkungen

    No full text
    corecore