1 research outputs found

    Improving the Algorithm of Choosing Spacing and Number of Stiff Supports Against A Concentrated Force in Steel-concrete Beams

    Full text link
    A steel-concrete beam was taken as the study object. The algorithm of selecting the number of stiff supports for the steel-concrete beam loaded with a concentrated lateral force in the middle of the span has been refined. Stiff supports served to join the steel strip with concrete to ensure their joint performance. The algorithm was refined based on the condition of equality of the longitudinal force in the steel strip from the action of the calculated load and the maximum longitudinal force obtained after setting the supports. In this case, the longitudinal forces in all stiff supports, as well as the spacing of the stiff supports should be the same. A disadvantage of the known algorithm consists in the complexity of determining the coefficient φb2 taking into account the effect of long-term concrete creep on the element deformation without cracks. This coefficient fluctuates widely and depends on many factors. Besides, it is also insufficiently studied. Calculations for determining the number and spacing of stiff supports in a steel-concrete beam were conducted according to the proposed algorithm and in the Lira software package. The forces acting on the supports and spacing of the supports were the same. The force acting in the support was 8941.5 N. When selecting characteristics of the steel-concrete beam, maximum longitudinal force in the steel strip was obtained. The longitudinal force amounted to 35726 N. The same longitudinal force was obtained from the diagram of longitudinal forces obtained after setting the supports. This study was aimed at improving the design of steel-concrete beams. A rational number and placement of stiff supports ensure savings: the required amount of building materials is reduced and their cost is reduced due to cutting labor costs for their manufacture and operatio
    corecore