6,888 research outputs found
Large Magnetic Susceptibility Anisotropy of Metallic Carbon Nanotubes
Through magnetic linear dichroism spectroscopy, the magnetic susceptibility
anisotropy of metallic single-walled carbon nanotubes has been extracted and
found to be 2-4 times greater than values for semiconducting single-walled
carbon nanotubes. This large anisotropy is consistent with our calculations and
can be understood in terms of large orbital paramagnetism of electrons in
metallic nanotubes arising from the Aharonov-Bohm-phase-induced gap opening in
a parallel field. We also compare our values with previous work for
semiconducting nanotubes, which confirm a break from the prediction that the
magnetic susceptibility anisotropy increases linearly with the diameter.Comment: 4 pages, 4 figure
Collisional energy transfer in two-component plasmas
The friction in plasmas consisting of two species with different temperatures
is discussed together with the consequent energy transfer. It is shown that the
friction between the two species has no effect on the ion acoustic mode in a
quasi-neutral plasma. Using the Poisson equation instead of the
quasi-neutrality reveals the possibility for an instability driven by the
collisional energy transfer. However, the different starting temperatures of
the two species imply an evolving equilibrium. It is shown that the relaxation
time of the equilibrium electron-ion plasma is, in fact, always shorter than
the growth rate time, and the instability can thus never effectively take
place. The results obtained here should contribute to the definite
clarification of some contradictory results obtained in the past
- …