153 research outputs found

    Data consistency of the burning velocity measurements

    Get PDF

    Keynotes

    Get PDF
    No abstract

    Laminar premixed flat non-stretched lean flames of hydrogen in air

    Get PDF
    Laminar burning velocity of lean hydrogen + air flames at standard conditions is still a debated topic in combustion. The existing burning velocity measurements possess a large spread due to the use of different measurement techniques and data processing approaches. The biggest uncertainty factor in these measurements comes from the necessity to perform extrapolation to the flat flame conditions, since all of the previously obtained data were recorded in stretched flames. In the present study, laminar burning velocity of lean hydrogen + air flames and its temperature dependence were for the first time studied in stretch-free flat flames on a heat flux burner. The equivalence ratio was varied from 0.375 to 0.5 and the range of the unburned gas temperatures was 278-358 K. The flat flames tended to form cells at adiabatic conditions, therefore special attention was paid to the issue of their appearance. The shape of the flames was monitored by taking OH* images with an EM-CCD camera. In most cases, the burning velocity had to be extrapolated from flat subadiabatic conditions, and the impact of this procedure was quantified by performing measurements in H-2 + air mixtures diluted by N-2. The effect of extrapolation was estimated to be of negligible importance for the flames at standard conditions. The measured burning velocities at 298 K showed an important difference to the previously obtained literature values. The temperature dependence of the burning velocity was extracted from the measured results. It was found to be in agreement with the trends predicted by the detailed kinetic modeling, as opposed to a vast majority of the available literature data. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved

    Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames

    Get PDF
    Quantitative concentrations measurements using time-resolved laser-induced fluorescence have been demonstrated for nitric oxide (NO) in flame. Fluorescence lifetimes measured using a picosecond Nd:YAG laser and optical parametric amplifier system have been used to directly compensate the measured signal for collisional quenching and evaluate NO concentration. The full evaluation also includes the spectral overlap between the ∼15cm-1 broad laser pulse and multiple NO absorption lines as well as the populations of the probed energy levels. Effective fluorescence lifetimes of 1.2 and 1.5ns were measured in prepared NO/N2/O2 mixtures at ambient pressure and temperature and in a premixed NH3-seeded CH4/N2/O2 flame, respectively. Concentrations evaluated from measurements in NO/N2/O2 mixtures with NO concentrations of 100-600ppm were in agreement with set values within 3% at higher concentrations. An accuracy of 13% was estimated by analysis of experimental uncertainties. An NO profile measured in the flame showed concentrations of ∼1000ppm in the post-flame region and is in good agreement with NO concentrations predicted by a chemical mechanism for NH3 combustion. An accuracy of 16% was estimated for the flame measurements. The direct concentration evaluation from time-resolved fluorescence allows for quantitative measurements in flames where the composition of major species and their collisional quenching on the probed species is unknown. In particular, this is valid for non-stationary turbulent combustion and implementation of the presented approach for measurements under such conditions is discussed

    Strategy for improved NH2 detection in combustion environments using an Alexandrite laser

    Get PDF
    A new scheme for NH2 detection by means of laser-induced fluorescence (LIF) with excitation around wavelength 385 nm, accessible using the second harmonic of a solid-state Alexandrite laser, is presented. Detection of NH2 was confirmed by identification of corresponding lines in fluorescence excitation spectra measured in premixed NH3-air flames and on NH2 radicals generated through NH3 photolysis in a nonreactive flow at ambient conditions. Moreover, spectral simulations allow for tentative NH2 line identification. Dispersed fluorescence emission spectra measured in flames and photolysis experiments showed lines attributed to vibrational bands of the NH2 A2A1 ← X2B1 transition but also a continuous structure, which in flame was observed to be dependent on nitrogen added to the fuel, apparently also generated by NH2. A general conclusion was that fluorescence interferences need to be carefully considered for NH2 diagnostics in this spectral region. Excitation for laser irradiances up to 0.2 GW/cm2 did not result in NH2 fluorescence saturation and allowed for efficient utilization of the available laser power without indication of laser-induced photochemistry. Compared with a previously employed excitation/detection scheme for NH2 at around 630 nm, excitation at 385.7 nm showed a factor of ~ 15 higher NH2 signal. The improved signal allowed for single-shot NH2 LIF imaging on centimeter scale in flame with signal-to-noise ratio of 3 for concentrations around 1000 ppm, suggesting a detection limit around 700 ppm. Thus, the presented approach for NH2 detection provides enhanced possibilities for characterization of fuel-nitrogen combustion chemistry

    On nanosecond plasma-assisted ammonia combustion: Effects of pulse and mixture properties

    Get PDF
    In this study, the effects of nanosecond plasma discharges on the combustion characteristics of ammonia are investigated over a wide range of mixture properties and plasma settings. The results reveal that the impacts of the plasma on ammonia combustion change non-monotonically by altering the reduced electric field value. Within the studied range of the reduced electric field, i.e., 100–700 Td, it is shown that plasma is most effective in the medium range, e.g., 250–400 Td. At lower values, the main fraction of the plasma energy is consumed to excite the diluent to higher vibrational levels. At very high reduced electric field values, a substantial portion of the plasma energy is transferred into the ionization reactions of the diluent, which compromises the effective excitations of fuel and oxidizer species. In terms of the pulse energy density, results indicate that an increase in the range of 0–20 mJ/cm3, at a given reduced electric field, decreases the ignition delay time by five orders of magnitude, and increases the laminar flame speed up to an order of magnitude, depending on the mixture composition. The results show that the plasma discharge produces more radicals, electronically excited and charged species when He is used as the diluent in the oxidizer instead of N2, since NH3 and O2 ionization reactions are strengthened in NH3/O2/He. Moreover, plasma discharge is highly effective in assisting the combustion of preheated lean mixtures. The present study also indicates that ammonia flame thickness is minimum at a critical pulse energy density in the range of 12–14 mJ/cm3. Further increases in the pulse energy density can manipulate the inner structure of the flame, altering the pre-heat zone of the flame to include some levels of chemical reactions toward the flameless mode of combustion

    Synergistic effects of nanosecond plasma discharge and hydrogen on ammonia combustion

    Get PDF
    Synergistic effects of nanosecond plasma discharge and hydrogen on the combustion characteristics of ammonia/air are numerically studied under conditions relevant to gas turbine combustion chambers. It is shown that increasing the plasma contribution in assisting the flame results in lower NOX emissions by up to 27% than those in flames assisted by hydrogen for the range of operating conditions considered in this study. Plasma makes the consumption speed of the reactants less prone to the strain rate than that in flames assisted by hydrogen. It is found that discharging plasma with the pulse energy density of 9 mJ/cm3 alongside using 12% hydrogen by volume in the fuel increases the flame speed of ammonia/air to those of conventional fossil fuels such as methane—an improvement that is not achievable by just using hydrogen, even at a high concentration of 30%. Furthermore, raising the pulse energy density beyond a specific value broadens the reaction zones by generating radical pools in the flame preheating zone, which is expedited in fuel-rich conditions with high H2 fuel fractions. Investigations show that the simultaneous utilization of high-energy plasma and hydrogen reduces the NOX emissions by activating the mechanisms of nitrogen oxide denitrification (DeNOX) in preheating and post-flame zones, being more significant under the lean condition as compared with rich and stoichiometric cases. It is shown that increasing mixture pressure significantly deteriorates the impacts of plasma on combustion. Such unfavorable effects are weakly controlled by changes in the reduced electric field caused by pressure augmentations

    Modeling Ozone Decomposition Flames

    No full text
    An updated detailed kinetic mechanism for ozone combustion is developed. The contemporary choice of the reaction rate constants is presented with emphasis on their uncertainties. Model predictions are compared with available experimental data for ozone decomposition flames and with the Moscow State University (MSU) mechanism used elsewhere in the literature. These two models show similar performance in calculating laminar burning velocities, yet predict largely different concentration profiles of singlet oxygen, O-2(a(1)triangle g). The necessity for consideration of all reactions included in the mechanism as reversible is emphasized
    corecore