1,654 research outputs found

    Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    Get PDF
    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 343^4 to 16416^4) and couplings (from β9\beta \approx 9 to β60\beta \approx 60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.Comment: 36 pages, 15 figures, REVTEX documen

    Magnetic domain fluctuations in an antiferromagnetic film observed with coherent resonant soft x-ray scattering

    Full text link
    We report the direct observation of slow fluctuations of helical antiferromagnetic domains in an ultra-thin holmium film using coherent resonant magnetic x-ray scattering. We observe a gradual increase of the fluctuations in the speckle pattern with increasing temperature, while at the same time a static contribution to the speckle pattern remains. This finding indicates that domain-wall fluctuations occur over a large range of time scales. We ascribe this non-ergodic behavior to the strong dependence of the fluctuation rate on the local thickness of the film.Comment: to appear in Phys. Rev. Let

    Promoting Connectivity of Network-Like Structures by Enforcing Region Separation

    Full text link
    We propose a novel, connectivity-oriented loss function for training deep convolutional networks to reconstruct network-like structures, like roads and irrigation canals, from aerial images. The main idea behind our loss is to express the connectivity of roads, or canals, in terms of disconnections that they create between background regions of the image. In simple terms, a gap in the predicted road causes two background regions, that lie on the opposite sides of a ground truth road, to touch in prediction. Our loss function is designed to prevent such unwanted connections between background regions, and therefore close the gaps in predicted roads. It also prevents predicting false positive roads and canals by penalizing unwarranted disconnections of background regions. In order to capture even short, dead-ending road segments, we evaluate the loss in small image crops. We show, in experiments on two standard road benchmarks and a new data set of irrigation canals, that convnets trained with our loss function recover road connectivity so well, that it suffices to skeletonize their output to produce state of the art maps. A distinct advantage of our approach is that the loss can be plugged in to any existing training setup without further modifications

    Making Market Rule(s)

    Get PDF
    This is the introductory essay for a special issue on the geographies of market construction and market regulation. It argues that in an age of markets, geographers ought to pay more attention to the seemingly mundane, but nevertheless socially constructed, rules that are necessary for any market to operate

    thermodynamic properties of pb3u11o36

    Get PDF
    Abstract In order to progress in the development of Lead-cooled Fast Reactors, from the safety point of view it is essential to understand the chemical compatibility between liquid lead and uranium oxide. In the present work, entropy and heat capacity of Pb3U11O36, a possible ternary compound coming from fuel-coolant chemical interaction, were determined for the first time. Entropy at 298.15 K was obtained from low temperature heat capacity measurements using the Physical Property Measurement System (PPMS) in the temperature range 2–300 K, while the high temperature heat capacity has been measured by a drop calorimeter from 373 K to 1200 K. The experimental thermodynamic properties were compared with the values computed by means of DFT-GGA simulations, obtaining a very good agreement
    corecore