6 research outputs found

    Neuropsychiatric adverse effects of synthetic glucocorticoids: a systematic review and meta-analysis

    Get PDF
    Context Synthetic glucocorticoids are widely used to treat patients with a broad range of diseases. While efficacious, glucocorticoids can be accompanied by neuropsychiatric adverse effects.Objective This systematic review and meta-analysis assesses and quantifies the proportion of different neuropsychiatric adverse effects in patients using synthetic glucocorticoids.Methods Six electronic databases were searched to identify potentially relevant studies. Randomized controlled trials, cohort studies, and cross-sectional studies assessing psychiatric side effects of glucocorticoids measured with validated questionnaires were eligible. Risk of bias was assessed with RoB 2, ROBINS-I, and AXIS appraisal tool. For proportions of neuropsychiatric outcomes, we pooled proportions, and when possible, differences in questionnaire scores between glucocorticoid users and nonusers were expressed as standardized mean differences (SMD). Data were pooled in a random-effects logistic regression model.Results We included 49 studies with heterogeneity in study populations, type, dose, and duration of glucocorticoids. For glucocorticoid users, meta-analysis showed a proportion of 22% for depression (95% CI, 14%-33%), 11% for mania (2%-46%), 8% for anxiety (2%-25%), 16% for delirium (6%-36%), and 52% for behavioral changes (42%-61%). Questionnaire scores for depression (SMD of 0.80 [95% CI 0.35-1.26]), and mania (0.78 [0.14-1.42]) were higher than in controls, indicating more depressive and manic symptoms following glucocorticoid use.Conclusion The heterogeneity of glucocorticoid use is reflected in the available studies. Despite this heterogeneity, the proportion of neuropsychiatric adverse effects in glucocorticoid users is high. The most substantial associations with glucocorticoid use were found for depression and mania. Upon starting glucocorticoid treatment, awareness of possible psychiatric side effects is essential. More structured studies on incidence and potential pathways of neuropsychiatric side effects of prescribed glucocorticoids are clearly needed.Metabolic health: pathophysiological trajectories and therap

    The DEXA-CORT trial: study protocol of a randomised placebo-controlled trial of hydrocortisone in patients with brain tumour on the prevention of neuropsychiatric adverse effects caused by perioperative dexamethasone

    Get PDF
    Introduction The synthetic glucocorticoid dexamethasone can induce serious neuropsychiatric adverse effects. Dexamethasone activates the glucocorticoid receptor (GR) but, unlike endogenous cortisol, not the mineralocorticoid receptor (MR). Moreover, dexamethasone suppresses cortisol production, thereby eliminating its MR binding. Consequently, GR overactivation combined with MR underactivation may contribute to the neuropsychiatric adverse effects of dexamethasone. The DEXA-CORT trial aims to reactivate the MR using cortisol to reduce neuropsychiatric adverse effects of dexamethasone treatment. Methods and analysis The DEXA-CORT study is a multicentre, randomised, double-blind, placebo-controlled trial in adult patients who undergo elective brain tumour resection treated perioperatively with high doses of dexamethasone to minimise cerebral oedema. 180 patients are randomised between treatment with either two times per day 10 mg hydrocortisone or placebo during dexamethasone treatment. The primary study outcome is the difference in proportion of patients scoring >= 3 points on at least one of the Brief Psychiatric Rating Scale (BPRS) questions 5 days postoperatively or earlier at discharge. Secondary outcomes are neuropsychiatric symptoms, quality of sleep, health-related quality of life and neurocognitive functioning at several time points postoperatively. Furthermore, neuropsychiatric history, serious adverse events, prescribed (psychiatric) medication and referrals or evaluations of psychiatrist/psychologist and laboratory measurements are assessed. Ethics and dissemination The study protocol has been approved by the Medical Research Ethics Committee of the Leiden University Medical Center, and by the Dutch competent authority, and by the Institutional Review Boards of the participating sites. It is an investigator-initiated study with financial support by The Netherlands Organisation for Health Research and Development (ZonMw) and the Dutch Brain Foundation. Results of the study will be submitted for publication in a peer-reviewed journal.Diabetes mellitus: pathophysiological changes and therap

    Glucocorticoid and Mineralocorticoid Receptors in the Brain: A Transcriptional Perspective

    No full text
    Adrenal glucocorticoid hormones are crucial for maintenance of homeostasis and adaptation to stress. They act via the mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs)-members of the family of nuclear receptors. MRs and GRs can mediate distinct, sometimes opposite, effects of glucocorticoids. Both receptor types can mediate nongenomic steroid effects, but they are best understood as ligand-activated transcription factors. MR and GR protein structure is similar; the receptors can form heterodimers on the DNA at glucocorticoid response elements (GREs), and they share a number of target genes. The transcriptional basis for opposite effects on cellular physiology remains largely unknown, in particular with respect to MR-selective gene transcription. In this review, we discuss proven and potential mechanisms of transcriptional specificity for MRs and GRs. These include unique GR binding to "negative GREs," direct binding to other transcription factors, and binding to specific DNA sequences in conjunction with other transcription factors, as is the case for MRs and NeuroD proteins in the brain. MR- and GR-specific effects may also depend on specific interactions with transcriptional coregulators, downstream mediators of transcriptional receptor activity. Current data suggest that the relative importance of these mechanisms depends on the tissue and physiological context. Insight into these processes may not only allow a better understanding of homeostatic regulation but also the development of drugs that target specific aspects of disease. Copyright (C) 2019 Endocrine SocietyDiabetes mellitus: pathophysiological changes and therap

    Mineralocorticoid receptor status in the human brain after dexamethasone treatment: a single case study

    No full text
    BackgroundSynthetic glucocorticoids like dexamethasone can cause severe neuropsychiatric effects. They preferentially bind to the glucocorticoid receptor (GR) over the mineralocorticoid receptor (MR). High dosages result in strong GR activation but likely also result in lower MR activation based on GR-mediated negative feedback on cortisol levels. Therefore, reduced MR activity may contribute to dexamethasone-induced neuropsychiatric symptoms. ObjectiveIn this single case study, we evaluate whether dexamethasone leads to reduced MR activation in the human brain. Brain tissue of an 8-year-old brain tumor patient was used, who suffered chronically from dexamethasone-induced neuropsychiatric symptoms and deceased only hours after a high dose of dexamethasone. Main outcome measuresThe efficacy of dexamethasone to induce MR activity was determined in HEK293T cells using a reporter construct. Subcellular localization of GR and MR was assessed in paraffin-embedded hippocampal tissue from the patient and two controls. In hippocampal tissue from the patient and eight controls, mRNA of MR/GR target genes was measured. ResultsIn vitro, dexamethasone stimulated MR with low efficacy and low potency. Immunofluorescence showed the presence of both GR and MR in the hippocampal cell nuclei after dexamethasone exposure. The putative MR target gene JDP2 was consistently expressed at relatively low levels in the dexamethasone-treated brain samples. Gene expression showed substantial variation in MR/GR target gene expression in two different hippocampus tissue blocks from the same patient. ConclusionsDexamethasone may induce MR nuclear translocation in the human brain. Conclusions on in vivo effects on gene expression in the brain await the availability of more tissue of dexamethasone-treated patients.Diabetes mellitus: pathophysiological changes and therap

    Transcriptional glucocorticoid effects in the brain: Finding the relevant target genes

    No full text
    Glucocorticoids are powerful modulators of brain function. They act via mineralocorticoid and glucocorticoid receptors (MR and GR). These are best understood as transcription factors. Although many glucocorticoid effects depend on the modulation of gene transcription, it is a major challenge to link gene expression to function given the large-scale, apparently pleiotropic genomic responses. The extensive sets of MR and GR target genes are highly specific per cell type, and the brain contains many different (neuronal and non-neuronal) cell types. Next to the set "trait" of cellular context, the "state" of other active signaling pathways will affect MR and GR transcriptional activity. Here, we discuss receptor specificity and contextual factors that determine the transcriptional outcome of MR/GR signaling, experimental possibilities offered by single-cell transcriptomics approaches, and reflect on how to make sense of lists of target genes in relation to understanding the functional effects of steroid receptor activation.Metabolic health: pathophysiological trajectories and therap

    Transcriptional glucocorticoid effects in the brain: Finding the relevant target genes

    No full text
    Glucocorticoids are powerful modulators of brain function. They act via mineralocorticoid and glucocorticoid receptors (MR and GR). These are best understood as transcription factors. Although many glucocorticoid effects depend on the modulation of gene transcription, it is a major challenge to link gene expression to function given the large-scale, apparently pleiotropic genomic responses. The extensive sets of MR and GR target genes are highly specific per cell type, and the brain contains many different (neuronal and non-neuronal) cell types. Next to the set "trait" of cellular context, the "state" of other active signaling pathways will affect MR and GR transcriptional activity. Here, we discuss receptor specificity and contextual factors that determine the transcriptional outcome of MR/GR signaling, experimental possibilities offered by single-cell transcriptomics approaches, and reflect on how to make sense of lists of target genes in relation to understanding the functional effects of steroid receptor activation
    corecore