136 research outputs found
The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array
Here we compare the plasma plume propagation characteristics of a 3-channel pulsed RF plasma jet array and those of the same device operated by a pulsed dc source. For the pulsed-RF jet array, numerous long life time ions and metastables accumulated in the plasma channel make the plasma plume respond quickly to applied electric field. Its structure similar as “plasma bullet” is an anode glow indeed. For the pulsed dcplasma jet array, the strong electric field in the vicinity of the tube is the reason for the growing plasma bullet in the launching period. The repulsive forces between the growing plasma bullets result in the divergence of the pulsed dcplasma jet array. Finally, the comparison of 309 nm and 777 nm emissions between these two jet arrays suggests the high chemical activity of pulsed RF plasma jet array
Nuclear receptor coactivator/coregulator NCoA6(NRC) is a pleiotropic coregulator involved in transcription, cell survival, growth and development
NCoA6 (also referred to as NRC, ASC-2, TRBP, PRIP and RAP250) was originally isolated as a ligand-dependent nuclear receptor interacting protein. However, NCoA6 is a multifunctional coregulator or coactivator necessary for transcriptional activation of a wide spectrum of target genes. The NCoA6 gene is amplified and overexpressed in breast, colon and lung cancers. NCoA6 is a 250 kDa protein which harbors a potent N-terminal activation domain, AD1; and a second, centrally-located activation domain, AD2, which is necessary for nuclear receptor signaling. The intrinsic activation potential of NCoA6 is regulated by its C-terminal STL regulatory domain. Near AD2 is an LxxLL-1 motif which interacts with a wide spectrum of ligand-bound NRs with high-affinity. A second LxxLL motif (LxxLL-2) located towards the C-terminal region is more restricted in its NR specificity. The potential role of NCoA6 as a co-integrator is suggested by its ability to enhance transcriptional activation of a wide variety of transcription factors and from its in vivo association with a number of known cofactors including CBP/p300. NCoA6 has been shown to associate with at least three distinct coactivator complexes containing Set methyltransferases as core polypeptides. The composition of these complexes suggests that NCoA6 may play a fundamental role in transcriptional activation by modulating chromatin structure through histone methylation. Knockout studies in mice suggest that NCoA6 is an essential coactivator. NCoA6-/- embryos die between 8.5-12.5 dpc from general growth retardation coupled with developmental defects in the heart, liver, brain and placenta. NCoA6-/- MEFs grow at a reduced rate compared to WT MEFs and spontaneously undergo apoptosis, indicating the importance of NCoA6 as a prosurvival and anti-apoptotic gene. Studies with NCoA6+/- and conditional knockout mice suggest that NCoA6 is a pleiotropic coregulator involved in growth, development, wound healing and maintenance of energy homeostasis
Environment-friendly surface acoustic wave humidity sensor with sodium alginate sensing layer
A low-cost and environment-friendly surface acoustic wave (SAW) humidity sensor was fabricated on a quartz substrate using sol-gel/spin-coated sodium alginate (SA) sensing layer. The sensing mechanism is based on the frequency shift of the SAW sensor caused by both mass loading and electrical loading, with the former being the dominant factor. The SA film prepared in this study is an environment-friendly material with a large number of hydroxyl and carboxylate groups, which easily adsorb and react with H2O molecules to form hydrogen bonds. These adsorbed H2O molecules lead to significantly enhanced mass loading and signal responses of the SAW sensor. Electrical loading effect is also generated due to the transfer of hydrogen ions in the H2O molecules, which alters the electrical resistance and results in changes of resonant frequencies of the SAW device. When the relative humidity (RH) is increased from 35% to 85%, the responses of the SAW sensor with 1 wt% SA are significantly decreased. Whereas in a low humidity environment (e.g., RH <35%), the responses of the sensor show a linear relationship with the change of humidity. The developed humidity sensor shows good short-term/long-term stabilities and a low temperature coefficient of frequency
The Periodic Instability of Diameter of ZnO Nanowires via a Self-oscillatory Mechanism
ZnO nanowires with a periodic instability of diameter were successfully prepared by a thermal physical vapor deposition method. The morphology of ZnO nanowires was investigated by SEM. SEM shows ZnO possess periodic bead-like structure. The instability only appears when the diameter of ZnO nanowires is small. The kinetics and mechanism of Instability was discussed at length. The appearance of the instability is due to negative feed-back mechanism under certain experimental conditions (crystallization temperature, vapor supersaturation, etc)
A Measurement of Psi(2S) Resonance Parameters
Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been
measured in the vicinity of the Psi(2S) resonance using the BESII detector
operated at the BEPC. The Psi(2S) total width; partial widths to hadrons,
pi+pi- J/Psi, muons; and corresponding branching fractions have been determined
to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)=
(2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)=
(97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%,
respectively.Comment: 8 pages, 6 figure
Measurements of the Mass and Full-Width of the Meson
In a sample of 58 million events collected with the BES II detector,
the process J/ is observed in five different decay
channels: , , (with ), (with
) and . From a combined fit of all five
channels, we determine the mass and full-width of to be
MeV/ and
MeV/.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
- …