298 research outputs found

    Multi-Channel Magnetocardiogardiography System Based on Low-Tc SQUIDs in an Unshielded Environment

    Get PDF
    AbstractMagnetocardiography (MCG) using superconducting quantum interference devices (SQUIDs) is a new medical diagnostic tool measuring biomagnetic signals that are generated by the electrical activity of the human heart. This technique is completely passive, contactless, and it has an advantage in the early diagnosis of heart diseases. We developed the first unshielded four-channel MCG system based on low-Tc DC SQUIDs in China. Instead of using a costly magnetically shielded room, the environmental noise suppression was realized by using second-order gradiometers and three-axis reference magnetometer. The measured magnetic field resolution of the system is better than 1 pT, and multi-cycle human heart signals can be recorded directly. Also, with the infrared positioning system, 48 points data collection can be realized by moving the non-magnetic bed nine times

    Environmental impact assessments of the Xiaolangdi Reservoir on the most hyperconcentrated laden river, Yellow River, China

    Get PDF
    The Yellow River is the most hyperconcentrated sediment-laden river in the world. Throughout recorded history, the Lower Yellow River (LYR) experienced many catastrophic flood and drought events. To regulate the LYR, a reservoir was constructed at Xiaolangdi that became operational in the early 2000s. An annual water-sediment regulation scheme (WSRS) was then implemented, aimed at flood control, sediment reduction, regulated water supply, and power generation. This study examines the eco-environmental and socioenvironmental impacts of Xiaolangdi Reservoir. In retrospect, it is found that the reservoir construction phase incurred huge financial cost and required large-scale human resettlement. Subsequent reservoir operations affected the local geological environment, downstream riverbed erosion, evolution of the Yellow River delta, water quality, and aquatic biodiversity. Lessons from the impact assessment of the Xiaolangdi Reservoir are summarized as follows: (1) The construction of large reservoirs is not merely an engineering challenge but must also be viewed in terms of resource exploitation, environmental protection, and social development; (2) long-term systems for monitoring large reservoirs should be established, and decision makers involved at national policy and planning levels must be prepared to react quickly to the changing impact of large reservoirs; and (3) the key to solving sedimentation in the LYR is not Xiaolangdi Reservoir but instead soil conservation in the middle reaches of the Yellow River basin. Proper assessment of the impacts of large reservoirs will help promote development strategies that enhance the long-term sustainability of dam projects

    Epidermal growth factor receptor in breast carcinoma: association between gene copy number and mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epidermal growth factor receptor (EGFR) is an available target of effective anti-EGFR therapy for human breast cancer. The aim of this study was to assess the presence of EGFR gene amplification and mutations in breast cancer and to analyze the association between the statuses of these two gene alterations.</p> <p>Materials and methods</p> <p>EGFR gene amplification and mutations were investigated in formalin-fixed, paraffin-embedded tissues from 139 Chinese female patients with breast cancer by means of fluorescence in-situ hybridization (FISH) and fluorescently labeled real-time quantitative polymerase chain reaction (RT-PCR), respectively.</p> <p>Results</p> <p>EGFR gene amplification was observed in 46/139 (33.1%) of cases by FISH. Based on RT-PCR, 2/139 (1.4%) samples had EGFR gene mutations. Overall, only 1 (0.7%) of the cases was identified with both whole gene amplification and mutation, and 92 (66.2%) of cases were negative for both. High gene copy numbers of EGFR had significant correlation with the occurrence of EGFR protein expressions (P = 0.002).</p> <p>Conclusion</p> <p>In this study, EGFR mutations were presented in only two samples, indicating that EGFR mutations should not be employed in future trials with anti-EGFR therapies for breast cancer. However, EGFR whole gene amplification is frequently observed in patients with breast cancer. It will be of significant interest to investigate whether EGFR gene copy number is a suitable screening test for EGFR-targeted therapy for breast cancer.</p

    Hepatitis B virus induces G1 phase arrest by regulating cell cycle genes in HepG2.2.15 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the effect of HBV on the proliferative ability of host cells and explore the potential mechanism.</p> <p>Methods</p> <p>MTT, colony formation assay and tumourigenicity in nude mice were performed to investigate the effect of HBV on the proliferative capability of host cells. In order to explore the potential mechanism, cell cycle and apoptosis were analysed. The cell cycle genes controlling the G1/S phase transition were detected by immunohistochemistry, westernblot and RT-PCR.</p> <p>Results</p> <p>HepG2.2.15 cells showed decreased proliferation ability compared to HepG2 cells. G1 phase arrest was the main cause but was not associated with apoptosis. p53, p21 and total retinoblastoma (Rb) were determined to be up-regulated, whereas cyclinE was down-regulated at both the protein and mRNA levels in HepG2.2.15 cells. The phosphorylated Rb in HepG2.2.15 cells was decreased.</p> <p>Conclusions</p> <p>Our results suggested that HBV inhibited the capability of proliferation of HepG2.2.15 cells by regulating cell cycle genes expression and inducing G1 arrest.</p

    Hepatitis B virus induces G1 phase arrest by regulating cell cycle genes in HepG2.2.15 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the effect of HBV on the proliferative ability of host cells and explore the potential mechanism.</p> <p>Methods</p> <p>MTT, colony formation assay and tumourigenicity in nude mice were performed to investigate the effect of HBV on the proliferative capability of host cells. In order to explore the potential mechanism, cell cycle and apoptosis were analysed. The cell cycle genes controlling the G1/S phase transition were detected by immunohistochemistry, westernblot and RT-PCR.</p> <p>Results</p> <p>HepG2.2.15 cells showed decreased proliferation ability compared to HepG2 cells. G1 phase arrest was the main cause but was not associated with apoptosis. p53, p21 and total retinoblastoma (Rb) were determined to be up-regulated, whereas cyclinE was down-regulated at both the protein and mRNA levels in HepG2.2.15 cells. The phosphorylated Rb in HepG2.2.15 cells was decreased.</p> <p>Conclusions</p> <p>Our results suggested that HBV inhibited the capability of proliferation of HepG2.2.15 cells by regulating cell cycle genes expression and inducing G1 arrest.</p
    corecore