8,575 research outputs found

    The Properties of H{\alpha} Emission-Line Galaxies at z = 2.24

    Full text link
    Using deep narrow-band H2S1H_2S1 and KsK_{s}-band imaging data obtained with CFHT/WIRCam, we identify a sample of 56 Hα\alpha emission-line galaxies (ELGs) at z=2.24z=2.24 with the 5σ\sigma depths of H2S1=22.8H_2S1=22.8 and Ks=24.8K_{s}=24.8 (AB) over 383 arcmin2^{2} area in the ECDFS. A detailed analysis is carried out with existing multi-wavelength data in this field. Three of the 56 Hα\alpha ELGs are detected in Chandra 4 Ms X-ray observation and two of them are classified as AGNs. The rest-frame UV and optical morphologies revealed by HST/ACS and WFC3 deep images show that nearly half of the Hα\alpha ELGs are either merging systems or with a close companion, indicating that the merging/interacting processes play a key role in regulating star formation at cosmic epoch z=2-3; About 14% are too faint to be resolved in the rest-frame UV morphology due to high dust extinction. We estimate dust extinction from SEDs. We find that dust extinction is generally correlated with Hα\alpha luminosity and stellar mass (SM). Our results suggest that Hα\alpha ELGs are representative of star-forming galaxies (SFGs). Applying extinction correction for individual objects, we examine the intrinsic Hα\alpha luminosity function (LF) at z=2.24z=2.24, obtaining a best-fit Schechter function characterized by a faint-end slope of α=−1.3\alpha=-1.3. This is shallower than the typical slope of α∼−1.6\alpha \sim -1.6 in previous works based on constant extinction correction. We demonstrate that this difference is mainly due to the different extinction corrections. The proper extinction correction is thus key to recovering the intrinsic LF as the extinction globally increases with Hα\alpha luminosity. Moreover, we find that our Hα\alpha LF mirrors the SM function of SFGs at the same cosmic epoch. This finding indeed reflects the tight correlation between SFR and SM for the SFGs, i.e., the so-called main sequence.Comment: 15 pages, 12 figures, 2 tables, Received 2013 October 11; accepted 2014 February 13; published 2014 March 18 by Ap

    Aberrant posterior cingulate connectivity classify first-episode schizophrenia from controls: A machine learning study

    No full text
    Background Posterior cingulate cortex (PCC) is a key aspect of the default mode network (DMN). Aberrant PCC functional connectivity (FC) is implicated in schizophrenia, but the potential for PCC related changes as biological classifier of schizophrenia has not yet been evaluated. Methods We conducted a data-driven approach using resting-state functional MRI data to explore differences in PCC-based region- and voxel-wise FC patterns, to distinguish between patients with first-episode schizophrenia (FES) and demographically matched healthy controls (HC). Discriminative PCC FCs were selected via false discovery rate estimation. A gradient boosting classifier was trained and validated based on 100 FES vs. 93 HC. Subsequently, classification models were tested in an independent dataset of 87 FES patients and 80 HC using resting-state data acquired on a different MRI scanner. Results Patients with FES had reduced connectivity between PCC and frontal areas, left parahippocampal regions, left anterior cingulate cortex, and right inferior parietal lobule, but hyperconnectivity with left lateral temporal regions. Predictive voxel-wise clusters were similar to region-wise selected brain areas functionally connected with PCC in relation to discriminating FES from HC subject categories. Region-wise analysis of FCs yielded a relatively high predictive level for schizophrenia, with an average accuracy of 72.28% in the independent samples, while selected voxel-wise connectivity yielded an accuracy of 68.72%. Conclusion FES exhibited a pattern of both increased and decreased PCC-based connectivity, but was related to predominant hypoconnectivity between PCC and brain areas associated with DMN, that may be a useful differential feature revealing underpinnings of neuropathophysiology for schizophrenia

    Part-Based Deep Hashing for Large-Scale Person Re-Identification

    Full text link
    © 1992-2012 IEEE. Large-scale is a trend in person re-identi-fication (re-id). It is important that real-time search be performed in a large gallery. While previous methods mostly focus on discriminative learning, this paper makes the attempt in integrating deep learning and hashing into one framework to evaluate the efficiency and accuracy for large-scale person re-id. We integrate spatial information for discriminative visual representation by partitioning the pedestrian image into horizontal parts. Specifically, Part-based Deep Hashing (PDH) is proposed, in which batches of triplet samples are employed as the input of the deep hashing architecture. Each triplet sample contains two pedestrian images (or parts) with the same identity and one pedestrian image (or part) of the different identity. A triplet loss function is employed with a constraint that the Hamming distance of pedestrian images (or parts) with the same identity is smaller than ones with the different identity. In the experiment, we show that the proposed PDH method yields very competitive re-id accuracy on the large-scale Market-1501 and Market-1501+500K datasets
    • …
    corecore