22 research outputs found

    Real-time measurement of phloem turgor pressure in Hevea brasiliensis with a modified cell pressure probe

    Full text link
    Background: Although the pressure flow theory is widely accepted for the transport of photoassimilates in phloem sieve elements, it still requires strong experimental validation. One reason for that is the lack of a precise method for measuring the real-time phloem turgor pressure from the sink tissues, especially in tree trunks. Results: Taking the merits of Hevea brasiliensis, a novel phloem turgor pressure probe based on the state of the art cell pressure probe was developed. Our field measurements showed that the phloem turgor pressure probe can sensitively measure the real-time variation of phloem turgor pressure in H. brasiliensis but the calculation of phloem turgor pressure with xylem tension, xylem sap osmotic potential and phloem sap osmotic potential will under-estimate it. The measured phloem turgor pressure gradient in H. brasiliensis is contrary to the M&uuml;nch theory. The phloem turgor pressure of H. brasiliensis varied from 8-12 bar as a consequence of water withdrawal from transpiration. Tapping could result in a sharp decrease of phloem turgor pressure followed by a recovery from 8-45 min after the tapping. The recovery of phloem turgor pressure after tapping and its change with xylem sap flow suggest the importance of phloem water relationship in the phloem turgor pressure regulation. Conclusion: The phloem turgor pressure probe is a reliable technique for measuring the real-time variation of phloem turgor pressures in H. brasiliensis. The technique could probably be extended to the accurate measurement of phloem turgor pressure in other woody plants which is essential to test the M&uuml;nch theory and to investigate the phloem water relationship and turgor pressure regulation. <br /

    Regulation of HbPIP2;3, a latex-abundant water transporter, is associated with latex dilution and yield in the rubber tree (Hevea brasiliensis Muell. Arg.)

    Full text link
    Rubber tree (Hevea brasiliensis) latex, the source of natural rubber, is synthesised in the cytoplasm of laticifers. Efficient water inflow into laticifers is crucial for latex flow and production since it is the determinant of the total solid content of latex and its fluidity after tapping. As the mature laticifer vessel rings are devoid of plasmodesmata, water exchange between laticifers and surrounding cells is believed to be governed by plasma membrane intrinsic proteins (PIPs). To identify the most important PIP aquaporin in the water balance of laticifers, the transcriptional profiles of ten-latex-expressed PIPs were analysed. One of the most abundant transcripts, designated HbPIP2;3, was characterised in this study. When tested in Xenopus laevis oocytes HbPIP2;3 showed a high efficiency in increasing plasmalemma water conductance. Expression analysis indicated that the HbPIP2;3 gene was preferentially expressed in latex, and the transcripts were up-regulated by both wounding and exogenously applied Ethrel (a commonly-used ethylene releaser). Although regular tapping up-regulated the expression of HbPIP2;3 during the first few tappings of the virginal rubber trees, the transcriptional kinetics of HbPIP2;3 to Ethrel stimulation in the regularly tapped tree exhibited a similar pattern to that of the previously reported HbPIP2;1 in the virginal rubber trees. Furthermore, the mRNA level of HbPIP2;3 was associated with clonal yield potential and the Ethrel stimulation response. Together, these results have revealed the central regulatory role of HbPIP2;3 in laticifer water balance and ethylene stimulation of latex production in Hevea

    High-Sensitive Surface Plasmon Resonance Imaging Biosensor Based on Dual-Wavelength Differential Method

    Get PDF
    Intensity interrogation surface plasmon resonance (ISPR) sensing has a simple schematic design and is the most widely used surface plasmon resonance technology at present. However, it has relatively low sensitivity, especially for ISPR imaging (ISPRi). In this paper, a new technique for the real-time monitoring of biomolecule binding on sensor surfaces via ISPRi detection is described. The technique is based on the interrogation of the differential value of two intensities at two specific wavelengths from the reflected light spectrum. In addition, we also optimized the selection of dual-wavelength parameters under different circumstances to achieve the highest sensitivity. The new technique achieved a refractive index resolution (RIR) of 2.24 × 10–6 RIU, which is far beyond that of traditional ISPRi technique. Moreover, our new ISPRi technique also realized the real-time detection of high-throughput biomolecular binding. This study is expected to promote the development of faster and more accurate SPRi technologies

    Variation of phloem turgor pressure in Hevea brasiliensis: An implication for latex yield and tapping system optimization

    Full text link
    Phloem turgor pressure (PTP) is the initial driving force for latex flow after a rubber tree is tapped and therefore plays an important role in rubber tree latex production. Variation in PTP with rubber tree clone, age, yield potential and commonly used Ethrel (an ethylene releaser) stimulation have, however, not been comprehensively studied to date. The aim of this study was to investigate these relations and examine whether PTP can be used as an index for rubber tree clone assessment and tapping system optimization. The results showed that: (1) the daily change of PTP in the foliation season suggests that a high PTP can ensure a high latex yield and tapping could be moved forward to midnight or earlier in the night; (2) the decrease of PTP from the basal to distal stem indicates the benefit of a controlled upward tapping system; (3) the logarithmic increase in PTP with rubber tree planting age and age-based mean girth suggests that the preferred age for the commencement of rubber tree tapping is eight years; (4) the change of PTP with regenerated bark age suggests that the regenerated bark could be exploited again after the second year; (5) PTP is positively related to the yield potential of rubber tree clones; (6) although Ethrel stimulation could not significantly increase the initial PTP of a rubber tree, it delays the recovery of PTP after tapping. Therefore, PTP is an indicator of rubber tree latex yield and can be used for tapping system optimization. &copy; 2014 Elsevier B.V

    Effects of Meteorological Factors on Apple Yield Based on Multilinear Regression Analysis: A Case Study of Yantai Area, China

    No full text
    Evaluating the impact of different meteorological conditions on apple yield and predicting the future yield in Yantai City is essential for production. Furthermore, it provides a scientific basis for the increase in apple yield. In this study, first, a grey relational analysis (GRA) was used to determine the quantitative relationship between different meteorological factors and meteorological yield which is defined as affected only by meteorological conditions. Then, the comprehensive meteorological factors extracted by a principal component analysis (PCA) were used as inputs for multiple linear regression (MLR). The apple yield accuracy was compared with the lasso regression prediction. Trend analysis showed that the actual apple yield increased annually, but the meteorological yield decreased annually over a long time. Correlation ranking illustrated that the meteorological yield was significantly correlated with the frost-free period, the annual mean temperature, the accumulated temperature above 10 °C, etc. The good consistency between GRA and MLR–PCA showed that the accumulated temperature above 10 °C, the March–October mean temperature, and the June–August mean temperature are key meteorological factors. In addition, it was found that the principal components F2, F4, and F5 were negatively correlated with meteorological yield, while the principal components F1 and F3 were positively correlated with meteorological yield. Moreover, the MLR–PCA model predicted the apple yield in 2020 as 47.256 t·ha−1 with a 7.089% relative error. This work demonstrates that the principal component regression model can effectively extract information about different meteorological factors and improve the model’s accuracy for analyzing key meteorological factors and predicting apple yield

    Involvement of rootstocks and their hydraulic conductance in the drought resistance of grafted rubber trees

    Full text link
    Improving drought resistance of rubber trees has become a pressing issue with the extension of rubber plantations and the prevalence of seasonal drought. Root system is vital to water and nutrients uptake of all plants, therefore, rootstocks could play decisive roles in drought resistance of grafted rubber trees on a specific scion clone. To investigate the responses of different clone rootstocks and their grafted trees to water stress and find applicable methods for selecting drought resistant rootstocks, seven related parameters and root hydraulic properties of both seeds originated and grafted saplings of PB86, PR107, RRIM600 and GT1 were measured to assess their drought resistance. It was shown that the rootstock drought resistance and root hydraulic conductance may improve the drought resistance of the grafted rubber trees. Among the four clone rootstocks, GT1, which demonstrated more resistant to drought and higher root hydraulic conductance, was comparatively resistant to drought both for the seed propagation seedlings and grafted saplings. In addition, studies on the grafted saplings with different root hydraulic conductance further validated the possibility of selecting drought resistant rootstocks on the basis of rootstock hydraulic conductance using a high-pressure flow meter
    corecore