82 research outputs found

    Polyphonic audio tagging with sequentially labelled data using CRNN with learnable gated linear units

    Get PDF
    Audio tagging aims to detect the types of sound events occurring in an audio recording. To tag the polyphonic audio recordings, we propose to use Connectionist Temporal Classification (CTC) loss function on the top of Convolutional Recurrent Neural Network (CRNN) with learnable Gated Linear Units (GLU-CTC), based on a new type of audio label data: Sequentially Labelled Data (SLD). In GLU-CTC, CTC objective function maps the frame-level probability of labels to clip-level probability of labels. To compare the mapping ability of GLU-CTC for sound events, we train a CRNN with GLU based on Global Max Pooling (GLU-GMP) and a CRNN with GLU based on Global Average Pooling (GLU-GAP). And we also compare the proposed GLU-CTC system with the baseline system, which is a CRNN trained using CTC loss function without GLU. The experiments show that the GLU-CTC achieves an Area Under Curve (AUC) score of 0.882 in audio tagging, outperforming the GLU-GMP of 0.803, GLU-GAP of 0.766 and baseline system of 0.837. That means based on the same CRNN model with GLU, the performance of CTC mapping is better than the GMP and GAP mapping. Given both based on the CTC mapping, the CRNN with GLU outperforms the CRNN without GLU.Comment: DCASE2018 Workshop. arXiv admin note: text overlap with arXiv:1808.0193

    Surrey-cvssp system for DCASE2017 challenge task4

    Get PDF
    In this technique report, we present a bunch of methods for the task 4 of Detection and Classification of Acoustic Scenes and Events 2017 (DCASE2017) challenge. This task evaluates systems for the large-scale detection of sound events using weakly labeled training data. The data are YouTube video excerpts focusing on transportation and warnings due to their industry applications. There are two tasks, audio tagging and sound event detection from weakly labeled data. Convolutional neural network (CNN) and gated recurrent unit (GRU) based recurrent neural network (RNN) are adopted as our basic framework. We proposed a learnable gating activation function for selecting informative local features. Attention-based scheme is used for localizing the specific events in a weakly-supervised mode. A new batch-level balancing strategy is also proposed to tackle the data unbalancing problem. Fusion of posteriors from different systems are found effective to improve the performance. In a summary, we get 61% F-value for the audio tagging subtask and 0.73 error rate (ER) for the sound event detection subtask on the development set. While the official multilayer perceptron (MLP) based baseline just obtained 13.1% F-value for the audio tagging and 1.02 for the sound event detection.Comment: DCASE2017 challenge ranked 1st system, task4, tech repor

    A joint separation-classification model for sound event detection of weakly labelled data

    Get PDF
    Source separation (SS) aims to separate individual sources from an audio recording. Sound event detection (SED) aims to detect sound events from an audio recording. We propose a joint separation-classification (JSC) model trained only on weakly labelled audio data, that is, only the tags of an audio recording are known but the time of the events are unknown. First, we propose a separation mapping from the time-frequency (T-F) representation of an audio to the T-F segmentation masks of the audio events. Second, a classification mapping is built from each T-F segmentation mask to the presence probability of each audio event. In the source separation stage, sources of audio events and time of sound events can be obtained from the T-F segmentation masks. The proposed method achieves an equal error rate (EER) of 0.14 in SED, outperforming deep neural network baseline of 0.29. Source separation SDR of 8.08 dB is obtained by using global weighted rank pooling (GWRP) as probability mapping, outperforming the global max pooling (GMP) based probability mapping giving SDR at 0.03 dB. Source code of our work is published.Comment: Accepted by ICASSP 201

    Large-scale weakly supervised audio classification using gated convolutional neural network

    Get PDF
    In this paper, we present a gated convolutional neural network and a temporal attention-based localization method for audio classification, which won the 1st place in the large-scale weakly supervised sound event detection task of Detection and Classification of Acoustic Scenes and Events (DCASE) 2017 challenge. The audio clips in this task, which are extracted from YouTube videos, are manually labeled with one or a few audio tags but without timestamps of the audio events, which is called as weakly labeled data. Two sub-tasks are defined in this challenge including audio tagging and sound event detection using this weakly labeled data. A convolutional recurrent neural network (CRNN) with learnable gated linear units (GLUs) non-linearity applied on the log Mel spectrogram is proposed. In addition, a temporal attention method is proposed along the frames to predicate the locations of each audio event in a chunk from the weakly labeled data. We ranked the 1st and the 2nd as a team in these two sub-tasks of DCASE 2017 challenge with F value 55.6\% and Equal error 0.73, respectively.Comment: submitted to ICASSP2018, summary on the 1st place system in DCASE2017 task4 challeng

    Audio Set classification with attention model: A probabilistic perspective

    Get PDF
    This paper investigates the classification of the Audio Set dataset. Audio Set is a large scale weakly labelled dataset of sound clips. Previous work used multiple instance learning (MIL) to classify weakly labelled data. In MIL, a bag consists of several instances, and a bag is labelled positive if at least one instances in the audio clip is positive. A bag is labelled negative if all the instances in the bag are negative. We propose an attention model to tackle the MIL problem and explain this attention model from a novel probabilistic perspective. We define a probability space on each bag, where each instance in the bag has a trainable probability measure for each class. Then the classification of a bag is the expectation of the classification output of the instances in the bag with respect to the learned probability measure. Experimental results show that our proposed attention model modeled by fully connected deep neural network obtains mAP of 0.327 on Audio Set dataset, outperforming the Google's baseline of 0.314 and recurrent neural network of 0.325.Comment: Accepted by ICASSP 201

    Sound Event Detection with Sequentially Labelled Data Based on Connectionist Temporal Classification and Unsupervised Clustering

    Full text link
    Sound event detection (SED) methods typically rely on either strongly labelled data or weakly labelled data. As an alternative, sequentially labelled data (SLD) was proposed. In SLD, the events and the order of events in audio clips are known, without knowing the occurrence time of events. This paper proposes a connectionist temporal classification (CTC) based SED system that uses SLD instead of strongly labelled data, with a novel unsupervised clustering stage. Experiments on 41 classes of sound events show that the proposed two-stage method trained on SLD achieves performance comparable to the previous state-of-the-art SED system trained on strongly labelled data, and is far better than another state-of-the-art SED system trained on weakly labelled data, which indicates the effectiveness of the proposed two-stage method trained on SLD without any onset/offset time of sound events

    Convolutional Gated Recurrent Neural Network Incorporating Spatial Features for Audio Tagging

    Get PDF
    Environmental audio tagging is a newly proposed task to predict the presence or absence of a specific audio event in a chunk. Deep neural network (DNN) based methods have been successfully adopted for predicting the audio tags in the domestic audio scene. In this paper, we propose to use a convolutional neural network (CNN) to extract robust features from mel-filter banks (MFBs), spectrograms or even raw waveforms for audio tagging. Gated recurrent unit (GRU) based recurrent neural networks (RNNs) are then cascaded to model the long-term temporal structure of the audio signal. To complement the input information, an auxiliary CNN is designed to learn on the spatial features of stereo recordings. We evaluate our proposed methods on Task 4 (audio tagging) of the Detection and Classification of Acoustic Scenes and Events 2016 (DCASE 2016) challenge. Compared with our recent DNN-based method, the proposed structure can reduce the equal error rate (EER) from 0.13 to 0.11 on the development set. The spatial features can further reduce the EER to 0.10. The performance of the end-to-end learning on raw waveforms is also comparable. Finally, on the evaluation set, we get the state-of-the-art performance with 0.12 EER while the performance of the best existing system is 0.15 EER.Comment: Accepted to IJCNN2017, Anchorage, Alaska, US

    DCASE 2018 Challenge Surrey Cross-Task convolutional neural network baseline

    Get PDF
    The Detection and Classification of Acoustic Scenes and Events (DCASE) consists of five audio classification and sound event detection tasks: 1) Acoustic scene classification, 2) General-purpose audio tagging of Freesound, 3) Bird audio detection, 4) Weakly-labeled semi-supervised sound event detection and 5) Multi-channel audio classification. In this paper, we create a cross-task baseline system for all five tasks based on a convlutional neural network (CNN): a "CNN Baseline" system. We implemented CNNs with 4 layers and 8 layers originating from AlexNet and VGG from computer vision. We investigated how the performance varies from task to task with the same configuration of neural networks. Experiments show that deeper CNN with 8 layers performs better than CNN with 4 layers on all tasks except Task 1. Using CNN with 8 layers, we achieve an accuracy of 0.680 on Task 1, an accuracy of 0.895 and a mean average precision (MAP) of 0.928 on Task 2, an accuracy of 0.751 and an area under the curve (AUC) of 0.854 on Task 3, a sound event detection F1 score of 20.8% on Task 4, and an F1 score of 87.75% on Task 5. We released the Python source code of the baseline systems under the MIT license for further research.Comment: Accepted by DCASE 2018 Workshop. 4 pages. Source code availabl

    Joint Detection and Classification Convolutional Neural Network on Weakly Labelled Bird Audio Detection

    Get PDF
    Bird audio detection (BAD) aims to detect whether there is a bird call in an audio recording or not. One difficulty of this task is that the bird sound datasets are weakly labelled, that is only the presence or absence of a bird in a recording is known, without knowing when the birds call. We propose to apply joint detection and classification (JDC) model on the weakly labelled data (WLD) to detect and classify an audio clip at the same time. First, we apply VGG like convolutional neural network (CNN) on mel spectrogram as baseline. Then we propose a JDC-CNN model with VGG as a classifier and CNN as a detector. We report the denoising method including optimally-modified log-spectral amplitude (OM-LSA), median filter and spectral spectrogram will worse the classification accuracy on the contrary to previous work. JDC-CNN can predict the time stamps of the events from weakly labelled data, so is able to do sound event detection from WLD. We obtained area under curve (AUC) of 95.70% on the development data and 81.36% on the unseen evaluation data, which is nearly comparable to the baseline CNN model

    Attention and Localization based on a Deep Convolutional Recurrent Model for Weakly Supervised Audio Tagging

    Get PDF
    Audio tagging aims to perform multi-label classification on audio chunks and it is a newly proposed task in the Detection and Classification of Acoustic Scenes and Events 2016 (DCASE 2016) challenge. This task encourages research efforts to better analyze and understand the content of the huge amounts of audio data on the web. The difficulty in audio tagging is that it only has a chunk-level label without a frame-level label. This paper presents a weakly supervised method to not only predict the tags but also indicate the temporal locations of the occurred acoustic events. The attention scheme is found to be effective in identifying the important frames while ignoring the unrelated frames. The proposed framework is a deep convolutional recurrent model with two auxiliary modules: an attention module and a localization module. The proposed algorithm was evaluated on the Task 4 of DCASE 2016 challenge. State-of-the-art performance was achieved on the evaluation set with equal error rate (EER) reduced from 0.13 to 0.11, compared with the convolutional recurrent baseline system.Comment: 5 pages, submitted to interspeech201
    • …
    corecore