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Abstract—Bird audio detection (BAD) aims to detect whether
there is a bird call in an audio recording or not. One difficulty of
this task is that the bird sound datasets are weakly labelled, that
is only the presence or absence of a bird in a recording is known,
without knowing when the birds call. We propose to apply joint
detection and classification (JDC) model on the weakly labelled
data (WLD) to detect and classify an audio clip at the same time.
First, we apply VGG like convolutional neural network (CNN)
on mel spectrogram as baseline. Then we propose a JDC-CNN
model with VGG as a classifier and CNN as a detector. We report
the denoising method including optimally-modified log-spectral
amplitude (OM-LSA), median filter and spectral spectrogram
will worse the classification accuracy on the contrary to previous
work. JDC-CNN can predict the time stamps of the events from
weakly labelled data, so is able to do sound event detection from
WLD. We obtained area under curve (AUC) of 95.70% on the
development data and 81.36% on the unseen evaluation data,
which is nearly comparable to the baseline CNN model.

I. INTRODUCTION

Bird audio detection (BAD) aims to detect the presence
or absence of bird calls in an audio recording. BAD is a
sound event detection (SED) task, which aims to identify
all the audio events and their occurrence time in a mixed
audio recording. BAD has many applications in environmental
science, such as monitoring the density and the migration of
birds in depopulated zone. SED has attracted many attentions
in recent years [1, 2]. Recently, a bird sound dataset around 40
hours with annotated labels is published with a bird detection
challenge [3]. This dataset provides us the opportunity to
research how the deep neural networks (DNN) can perform on
SED tasks compared to the success on the image classification
[4] and speech recognition [5].

BAD has many difficulties. First, in an audio clip only the
presence or the absence of birds is known but not knowing the
time stamps of the bird calls and other sounds. We refer to this
kind of data as weakly labelled data (WLD) [6]. In contrast,
we refer to the data with frame level label as strongly labelled
data (SLD). In practice, labelling the audio clips at the frame
level is time consuming and impractical. In compromise, the
audio recordings are usually cut into small chunks such as
10 seconds. Each chunk is labelled either 1 or 0 representing
the presence or absence of a bird call in this chunk. This
reduces the labelling time as well as increases the accuracy of
the labelling procedure because the border of the bird call and

non-bird sounds are often ambiguous. Second, the call patterns
of different birds varies. For example, the call patterns of a
cuckoo and a sparrow are different. Third, audio recordings are
usually mixed with other sounds such as dogs’ barking, human
speech, and background noise such as wind or rain. Some
sounds are hard to distinguish from real birds such as whistling
or a fake bird call imitated by a human. Furthermore, in some
scenes the signal to noise ratio (SNR) is very low and the
noise may even conceal the bird calls. Previous research shows
denoising is important in BAD [3]. However our experimental
results show denoising is not helpful when using CNNs or our
proposed JDC-CNN model.

We organize the paper as follows. In Section 2 we introduce
the related works. In Section 3 we introduce audio denoising
method applied in this paper. In Section 4 we propose a VGG
convolutional neural network (CNN) on the mel spectrogram
as a baseline CNN model. In Section 5 we proposea joint
detection and classification (JDC-CNN) model. In Section 6
are show experimental results. Finally we summary our work
and forecast the future work in Section 7.

II. RELATED WORKS

Bird audio detection (BAD) has attracted a range of interests
since recent years. Early researches of BAD applies automatic
speech recognition (ASR) techniques such as Gaussian mix-
ture model (GMM) or hidden Markov model (HMM) [7, 8, 9]
where mel spectrum or mel frequency cepstrum coefficient
(MFCC) are usually used as features. MFCC is shown worse
than mel spectrum on the bird detection task in [10]. In [10]
spherical k-means and random forest algorithm are applied.
Spherical k-means uses cosine distance instead of Euclidean
distance so is robust to the energy dynamic change.

To use the weakly labelled data (WLD), multi instance
learning (MIL) is applied in [11, 12]. In MIL the classification
is on the bags instead of on the instances (frames) where each
bag is a collection of several instances (frames). A positive
bag contains at least one positive instance while a negative
bag consists of only negative instances.

Recently deep neural network methods such as convo-
lutional neural networks (CNNs) [4] especially VGG nets
[13] have been widely applied to image classification, speech
recognition [5] and audio tagging [14]. Furthermore, we refer
to [3, 15] as review papers of BAD.
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Fig. 1. Baseline CNN [13] and joint detection and classification (JDC) model.
Solid blocks are baseline CNN. Dash blocks together with solid blocks consist
JDC-CNN model. Input is mel spectrogram with 440 frames and 40 mel
frequency bins. Batch normalization is applied on each frequency bin.

The datasets of BAD task includes Warblr [3], Chernoby1
Exculusion Zone (CEZ) [3], Freefield [16], HJA [12], Bird-
CLEF [17]. Most of the datasets are weakly labelled with only
the presence or the absence of a bird in a recording but without
frame level label.

III. CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) have many suc-
cessful applications in image related tasks, such as image
classification [4] and object detection [18]. Compared to fully
connected (FC) neural networks, CNNs have much fewer
connections and parameters so they are easier to train and go
deep. Recently CNNs have been applied to speech recognition
[5] and audio tagging [14], where the spectrogram is fed to
the CNN instead of using manual selected features such as
Mel frequency coefficient cepstrum (MFCC) [19]. Recently a
kind of CNN called VGG with small kernel size of 3 × 3 is
proposed in [13] and is widely used in image classification
[20]. In this paper we apply VGG on the mel spectrogram as
a baseline CNN model (Figure 1).

IV. JOINT DETECTION AND CLASSIFICATION (JDC) MODEL

One deficiency of the baseline CNN is that the baseline
CNN does not indicate when a sound event occurs. This is
because the global max pooling or global average pooling in
CNN does not preserve the local information of the feature
maps. Global max pooling only uses the maximum value of
each feature map and ignore other values. In contrast, global
average pooling averages all values in a feature map even if
some parts of a feature map does not contain events. Ideally
we hope to find a pooling strategy utilizing all the values from

Fig. 2. JDC-CNN model. The detector decides whether to attend or ignore a
frame. The classifier outputs a probability indicating a frame contains a bird
call or other events. Fully connected classifier is built on the multiplication
of the detector and the classifier.

the feature maps containing bird events and ignore other values
without bird events. We also hope to generate a probability on
each frame indicating the probability of a frame contains a
bird.

We propose to use joint detection and classification (JDC)
model [21] to do the BAD task which is able to do detection
and classification at the same time. JDC model consists
of a detector and a classifier. The detector w(·) outputs a
probability between 0 and 1 indicating whether a frame should
be attended or ignored. The classifier f(·) outputs a probability
indicating what events this frame contain (Figure 2).

We denote the output of the detector and the classifier as
wt and htfi, respectively, where t, f , i are indexes of the time
axis, frequency axis and feature map. To combine the output
of the detector and the classifier, we sum out the time axis of
the multiplication of the normalized detector and the classifier,
which we call weighted pooling and is denoted by vfi.

vfi =

T∑
t=1

wthtfi (1)

where w̃t is the normalized detector.

w̃t =
wt∑T
t=1 wt

(2)

The reason we use the normalized detector w̃(·) instead of
the detector w(·) is that the multiplication of the classifier
and the normalized detector can be seen as weighted global
pooling. Both global max pooling and global mean pooling
can be seen a specific form of the weighted global pooling.
Finally vfi is flattened and fed to a fully connected classifier
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Fig. 3. First column: spectrogram of two audio recordings with different scene noise and level. Second column: spectrogram of OM-LSA algorithm denoised
recordings. Third column: median filter enhanced spectrogram. Fourth column: spectral subtraction enhanced spectrogram

f(·). We use the binary crossentropy between the output and
the ground truth as loss function and apply backpropogation
on both the detector and the classifier to train the JDC model.

V. AUDIO DENOISING

The real audio recordings consist of not only the event
sounds but also the background noise. The background noise
may vary from scenes to scenes. Previous work suggests noise
reduction is important in BAD [3]. For additive noise, the
mixed sound can be decomposed by:

s(t) = x(t) + e(t) (3)

where s(t), x(t) and e(t) are mixed sound, event sounds and
scene noise, respectively. Without denoising, the features are
extracted by applying the transformation T (·) on s(t), where
T (·) is the short time Fourier transform (STFT):

S(t, f) = T (s(t)) (4)

where t and f are indexes of the time axis and the frequency
axis, respectively. Ideally, we want to eliminate the noise e(t)
from different scenes because the background noise usually
carries little information and will worse the detecting of the
sound events. We try to apply denoising algorithms on both
the audio domain and the spectrogram. We assume the back-
ground noise is stationary and only change slowly. First, we
apply optimally-modified log-spectral amplitude (OM-SLA)
[22] denoted as D1 on each audio clip. Then median filter [23]
and spectral subtraction [24] is applied on the spectrogram,
denoted by D2 and D3, respectively. We denote the denoised
spectrogram as:

S̃(t, f) = D3D2T (D1(s(t))) (5)

A. Optimally-modified log-spectral amplitude (OM-LSA)

Optimally-modified log-spectral amplitude (OM-LSA) is
proposed by Cohen and applied to speech enhancement in
2001 [22]. The noise estimation is given by averaging past

spectral power values, using a smoothing parameter that is
adjusted by the speech presence probability in subbands. OM-
LSA can enhance the speech mixed with non-stationary noise,
which is also applicable for enhancing the bird sounds. In
Figure 3, the first column are spectrograms of two recordings
under different noise. The second column shows their corre-
sponding OM-LSA denoised spectrogram.

B. Median filter

Median filter is widely used to remove the salt-and-pepper
noise in image processing [23]. Similarly, we can apply the
median filter to the spectrogram because it can remove the
salt-and-pepper noise on the spectrogram caused by random
noise. On the other hand, the spectrogram of bird calls are
continuous in both time and frequency domain so are not
affected by median filter. After applying the median filter, the
corresponding spectrograms are shown in the third column of
Figure 3.

C. Spectral subtraction

Spectral subtraction is a simple and effective method for
noise reduction [24]. A noise level is estimated from parts
of the spectrogram for each frequency bin, for example, the
median value of each frequency bin. Then Each frequency bin
is subtracted by their noise level. The negative value obtained
from subtraction is clipped to 0. The spectral subtraction
enhanced spectrograms are shown in the fourth column of
Figure 3.

VI. EXPERIMENTS

A. Data preparation

We use the bird detection challenge dataset [3] contain-
ing Warblr [3] and Freefield1010 [16] as development data.
Warblr dataset contains 10,000 ten-second (totally 44 hours)
smartphone audio recordings from around UK. Freefield1010
contains 7,000 ten-second recordings from a diverse location
and environment and is newly annotated for the BAD chal-
lenge. We combine the two datasets and divide them to 10
folds, with 8 folds for training, 1 fold for validation and 1
fold for testing.
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Fig. 4. (a) Mel spectrogram of an audio containing a bird. (b,c) Two feature
maps after the last convolution operation before the global pooling. (d) Output
of the detector.

We try both with denoising and without denoising for
preprocessing data. For denoising, we apply OM-LSA on the
audio recordings followed by median filter and spectral sub-
traction on the spectrogram. We extracted 40 mel filter bank
features with minimum frequency of 200 Hz and maximum
frequency of 12000 Hz using librosa1.

The configuration of the model is shown in Figure 1. We
use Adam optimizer [25] with learning rate 0.001. The training
takes around 2 minutes / epoch on a single TitanX GPU. The
training takes around 50 epochs to converge. Code for JDC-
CNN model is available online2.

B. Results

Table 1 compares the results of different denoising strate-
gies. We use no denoising with global max pooling and global
average pooling as baseline. To speed up the training, in
this sub-experiment we only one fold is used for training.
From Table 1 we see in contrast to previous research [3],
the classification area under curve (AUC) [26] was worse with
denoising. On the other hand, JDC achieves comparable results
with global max pooling and global mean pooling. Although
JDC-CNN model does not outperform the baseline CNN
model in AUC, Figure 4 shows JDC-CNN is able to detect
when a bird calls from weakly labelled data by visualizing
the detector.

As denoising will worse the classification result, we aban-
don denoising in the following experiments. Table 2 compares
how the training data size will affect the classification result.
We experimented using 1 fold on 8 folds for training. Ob-
viously, Table 2 shows the AUC increases with training data

1https://github.com/librosa/librosa
2https://github.com/qiuqiangkong/bird detection

size increases. Furthermore, all of global max pooling, global
mean pooling on CNN and JDC-CNN model achieves similar
results, without significant difference.

Table 3 shows the performance on the private evaluation
dataset. This dataset is mostly recorded in Chernoby whose
data distribution is different from the development dataset.
Table 3 shows the JDC-CNN model achieved comparable
AUC compared with the global max pooling and global mean
pooling on CNN.

TABLE I
AUC OF DIFFERENT DENOISING AND GLOBAL POOLING STRATEGY

global max
pooling (%)

global mean
pooling (%)

JDC (%)

no denoising 91.59+-0.46 91.48+-0.54 91.60+-0.45
OM-LSA 91.16+-0.20 91.32+-0.30 91.37+-0.20
OM-LSA + me-
dian filter + spec-
tral subtraction

88.46+-0.42 89.32+-0.16 90.03+-0.32

TABLE II
AUC OF THE MODELS TRAINED ON DIFFERENT SIZE OF DATA

global max
pooling (%)

global mean
pooling (%)

JDC (%)

train on 1 fold 91.59+-0.46 91.48+-0.54 91.60+-0.45
train on 8 folds 96.04+-0.22 95.88+-0.18 95.70+-0.18

TABLE III
AUC EVALUATED ON PRIVATE EVALUATION DATA

global max
pooling (%)

global mean
pooling (%)

JDC (%)

private dataset 78.78 82.05 81.36

VII. CONCLUSION

In this paper, we propose to use joint detection and clas-
sification convolutional neural network (JDC-CNN) on the
weakly labelled bird audio dataset. JDC model consists of
a detector modeled by CNN and a classifier modeled by
VGG. The detector can attend to important events and ig-
nore unimportant noise. The classifier outputs a probability
indicating a frame contains a bird or not. By applying JDC-
CNN, the weakly labelled data (WLD) can be converted to
strongly labelled data (SLD). Furthermore, we show that de-
noising methods including OM-LSA, median filter and spectral
subtraction do not help the detection in contrast to previous
research. In practice, the detector of JDC model sometimes
has false alarms, that is the detector may attend to non-birds
events wrongly, especially on the unseen data. In future, more
work on JDC model will be explored.
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