8 research outputs found

    Impact of COVID-19 Pandemic on School-Aged Children’s Physical Activity, Screen Time, and Sleep in Hong Kong: A Cross-Sectional Repeated Measures Study

    Get PDF
    Despite concerns about the negative effects of social distancing and prolonged school closures on children’s lifestyle and physical activity (PA) during the COVID-19 pandemic, robust evidence is lacking on the impact of the pandemic-related school closures and social distancing on children’s wellbeing and daily life. This study aimed to examine changes in the PA levels, sleep patterns, and screen time of school-aged children during the different phases of the COVID-19 outbreak in Hong Kong using a repeated cross-sectional design. School students (grades 1 to 12) were asked to report their daily electronic device usage and to fill in a sleep diary, recording their daily sleep onset and wake-up time. They were equipped with a PA monitor, Actigraph wGT3X-BT, to obtain objective data on their PA levels and sleep patterns. Students were recruited before the pandemic (September 2019–January 2020; n = 577), during school closures (March 2020–April 2020; n = 146), and after schools partially reopened (October 2020–July 2021; n = 227). Our results indicated lower PA levels, longer sleep duration, and longer screen time among participants recruited during school closures than those recruited before the COVID-19 outbreak. Primary school students were found to sleep on average for an extra hour during school closures. The later sleep onset and increased screen time documented during school closures persisted when schools partially reopened. Our findings illustrate the significant impact of social distancing policies during the COVID-19 pandemic on the sleep pattern, screen time, and PA level in school-aged children in Hong Kong. Professionals should urgently reinforce the importance of improving physically activity, good sleep hygiene, and regulated use of electronic devices for parents and school-aged children during this unprecedented time

    A broken sewing needle in the knee of a 4-year-old child: is it really inside the knee?

    No full text
    We report on a case of a broken needle that migrated inside the knee joint of a 4-year-old girl. Searching for any small foreign body in the knee joint is not easy in either open or arthroscopic procedures. In this case, the surgery was made more difficult because of technical delays and diagnostic difficulties in defining the surgical plane of the needle. Arthroscopic expertise and some basic precautions can minimize the morbidity to a young patient and prevent migration into the knee joint proper

    Effect of filler functionalization on thermo-mechanical properties of polyamide-12/carbon nanofibers composites: a study of filler-matrix molecular interactions

    No full text
    The effect of carbon nanofiber (CNF) functionalization on the thermo-mechanical properties of polyamide-12/CNF nanocomposites was investigated. Three main different surface treatments were performed to obtain CNF-OH (OH rich), CNF-Silane (C6H5Si-O-), and CNF-peroxide. CNF modified with poly-(tert-butyl acrylate) chains grown from the surface via ATRP (atom transfer radical polymerization) were also prepared and tested. The modified CNFs and neat CNFs were used as fillers in polyamide-12 nanocomposites and the properties of the ensuing materials were characterized and compared. Universal tensile tests demonstrated a substantial increase (up to 20 %) of the yield strength, without reduction of the final elongation, for all functionalized samples tested within 1 wt% filler content. Further evidences of mechanical properties improvement were given by dynamic mechanical thermal analyses. CNFs functionalized with poly-(tert-butyl acrylate) and silane exhibited the best performance with stiffening and strengthening at low (a parts per thousand currency sign1 wt%) filler loadings, via a partial decrease of the intensity of beta-transitions attributed to favorable interactions between the functional groups on the surface of functionalized CNFs and polyamide-12. CNFs treated with peroxide proved to be the most simple preparation technique and the ensuing nanocomposites exhibited the highest storage modulus at high (5 wt%) filler content. Theoretical simulations using the micro-mechanics model were used to predict the Young modulus of the composites and compare them with experimental data. The results obtained suggest a synergistic effect between the matrix and the filler enhanced by surface functionalization

    Carbon nanotubes

    No full text
    International audienceCarbon nanotubes (CNT s) are remarkable objects that once looked set to revolutionize the technological landscape in the near future. Since the 1990s and for twenty years thereafter, it was repeatedly claimed that tomorrow's society would be shaped by nanotube applications, just as silicon-based technologies dominate society today. Space elevators tethered by the strongest of cables, hydrogen-powered vehicles, artificial muscles: these were just a few of the technological marvels that we were told would be made possible by the science of carbon nanotubes. Of course, this prediction is still some way from becoming reality; most often the possibilities and potential have been evaluated, but actual technological development is facing the unforgiving rule that drives the transfer of a new material or a new device to market: profitability. New materials, even more so for nanomaterials, no matter how wonderful they are, have to be cheap to produce, constant in quality, easy to handle, and nontoxic. Those are the conditions for an industry to accept a change in its production lines to make them nanocompatible. Consider the example of fullerenes – molecules closely related to nanotubes. The anticipation that surrounded these molecules, first reported in 1985, resulted in the bestowment of a Nobel Prize for their discovery in 1996. However, two decades later, very few fullerene applications have reached the market, suggesting that similarly enthusiastic predictions about nanotubes should be approached with caution, and so should it be with graphene, another member of the carbon nanoform family which joined the game in 2004, again acknowledged by a Nobel Prize in 2010. There is no denying, however, that the expectations surrounding carbon nanotubes are still high, because of specificities that make them special compared to fullerenes and graphene: their easiness of production, their dual molecule/nano-object nature, their unique aspect ratio, their robustness, the ability of their electronic structure to be given a gap, and their wide typology etc. Therefore, carbon nanotubes may provide the building blocks for further technological progress, enhancing our standard of living. In this chapter, we first describe the structures, syntheses, growth mechanisms, and properties of carbon nanotubes. Then we introduce nanotube-based materials, which comprise on the one hand those formed by reactions and associations of all-carbon nanotubes with foreign atoms, molecules and compounds, and on the other hand, composites, obtained by incorporating carbon nanotubes in various matrices. Finally, we will provide a list of applications currently on the market, while skipping the potentially endless and speculative list of possible applications

    Properties and Applications of Polymer Nanocomposite

    No full text

    Carbon nanotubes

    No full text
    Carbon nanotubes (CNTs) are remarkable objects that once looked set to revolutionize the technological landscape in the near future. Since the 1990s and for twenty years thereafter, it was repeatedly claimed that tomorrow’s society would be shaped by nanotube applications, just as silicon-based technologies dominate society today. Space elevators tethered by the strongest of cables, hydrogen-powered vehicles, artificial muscles: these were just a few of the technological marvels that we were told would be made possible by the science of carbon nanotubes. Of course, this prediction is still some way from becoming reality; most often the possibilities and potential have been evaluated, but actual technological development is facing the unforgiving rule that drives the transfer of a new material or a new device to market: profitability. New materials, even more so for nanomaterials, no matter how wonderful they are, have to be cheap to produce, constant in quality, easy to handle, and nontoxic. Those are the conditions for an industry to accept a change in its production lines to make them nanocompatible. Consider the example of fullerenes – molecules closely related to nanotubes. The anticipation that surrounded these molecules, first reported in 1985, resulted in the bestowment of a Nobel Prize for their discovery in 1996. However, two decades later, very few fullerene applications have reached the market, suggesting that similarly enthusiastic predictions about nanotubes should be approached with caution, and so should it be with graphene, another member of the carbon nanoform family which joined the game in 2004, again acknowledged by a Nobel Prize in 2010. There is no denying, however, that the expectations surrounding carbon nanotubes are still high, because of specificities that make them special compared to fullerenes and graphene: their easiness of production, their dual molecule/nano-object nature, their unique aspect ratio, their robustness, the ability of their electronic structure to be given a gap, and their wide typology etc. Therefore, carbon nanotubes may provide the building blocks for further technological progress, enhancing our standard of living. In this chapter, we first describe the structures, syntheses, growth mechanisms, and properties of carbon nanotubes. Then we introduce nanotube-based materials, which comprise on the one hand those formed by reactions and associations of all carbon nanotubes with foreign atoms, molecules and compounds, and on the other hand, composites, obtained by incorporating carbon nanotubes in various matrices. Finally, we will provide a list of applications currently on the market, while skipping the potentially endless and speculative list of possible applications
    corecore