36 research outputs found

    Comparison Between NPP-VIIRS Aerosol Data Products and the MODIS AQUA Deep Blue Collection 6 Dataset Over Land

    Get PDF
    Aerosols are small particles suspended in the atmosphere and have a variety of natural and man-made sources. Knowledge of aerosol optical depth (AOD), which is a measure of the amount of aerosol in the atmosphere, and its change over time, is important for multiple reasons. These include climate change, air quality (pollution) monitoring, monitoring hazards such as dust storms and volcanic ash, monitoring smoke from biomass burning, determining potential energy yields from solar plants, determining visibility at sea, estimating fertilization of oceans and rainforests by transported mineral dust, understanding changes in weather brought upon by the interaction of aerosols and clouds, and more. The Suomi-NPP satellite was launched late in 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine AOD. This study compares the VIIRS dataset to ground-based measurements of AOD, along with a state-of-the-art satellite AOD dataset (the new version of the Moderate Resolution Imaging Spectrometer Deep Blue algorithm) to assess its reliability. The Suomi-NPP satellite was launched late in 2011, carrying several instruments designed to continue the biogeophysical data records of current and previous satellite sensors. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine aerosol optical depth (AOD), and related activities since launch have been focused towards validating and understanding this new dataset through comparisons with other satellite and ground-based products. The operational VIIRS AOD product is compared over land with AOD derived from Moderate Resolution Imaging Spectrometer (MODIS) observations using the Deep Blue (DB) algorithm from the forthcoming Collection 6 of MODIS dat

    Current Applications of OMI Tropospheric NO2 Data for Air Quality and a Look to the Future

    Get PDF
    Ozone Monitoring Instrument (OMI) Tropospheric NO2 products are being used to enhance the ability to monitor changes in NO2 air quality, update emission inventories, and evaluate regional air quality models. Trends in tropospheric column NO2 have been examined over the eastern United States in relation to emissions changes mandated by regulatory actions. Decreases of 20 to 40 percent over the period 2005 to 2008 were noted, largely in response to major emission reductions at power plants. The OMI data have been used to identify regions in which the opposite trend has been found. We have also used OMI NO2 in efforts to improve emission inventories for NOx emissions from soil. Lightning NOx emissions have been added to CMAQ, the US Environmental Protection Agency's regional air quality model. Evaluation of the resulting NO2 columns in the model is being conducted using the OMI NO2 observations. Community Multiscale Air Quality (CMAQ) together with the OMI NO2 data comprise a valuable tool for monitoring and predicting air quality. Looking to the future, we expect that the combination of Global Ozone Monitoring Experiment-2 (GOME-2) (morning) and OMI (afternoon) data sets obtained through use of the same retrieval algorithms will substantially increase the possibility of successful integration of satellite information into regional air quality forecast models. Farther down the road, we anticipate the Geostationary Coastal and Air Pollution Events (GEO-CAPE) platform to supply data possibly on an hourly basis, allowing much more comprehensive analysis of air quality from space

    Reduction of Aerosol Absorption in Beijing Since 2007 from MODIS and AERONET

    Get PDF
    An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid-2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Angstrom exponent. At the same time, it shows an increasing trend in the single scattering albedo, by approx.0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008

    IL-1 receptor antagonist gene as a predictive biomarker of progression of knee osteoarthritis in a population cohort

    Get PDF
    Within the interleukin-1 (IL-1) cytokine family, IL-1 receptor antagonist (IL1RN) gene variants have been associated with radiological severity of knee osteoarthritis (OA) in cross-sectional studies. The present study tested the relation between IL1RN gene variants and progression of knee OA assessed radiographically by change in Kellgren-Lawrence (KL) score over time

    Screening for snow/snowmelt in SNPP VIIRS aerosol optical depth algorithm

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) spacecraft provides validated daily global aerosol optical depth (AOD) retrievals; however, a close examination of the VIIRS aerosol product identified residual snow and snowmelt contamination, resulting generally in an overestimation of AOD. The contamination was particularly evident over Northern Hemisphere high-latitude regions during the spring thaw. To improve the product performance, we introduced a new empirical snow and snowmelt screening scheme that combines a normalized difference snow index (NDSI)- and brightness temperature (BT)-based snow test, a snow adjacency test and a spatial homogeneity test (a.k.a. spatial filter). Testing of retrievals for 18 May 2014 indicated that, compared to the previous, visible reflectance anomaly (VRA)-based snow test, the new NDSI- and BT-based snow test screened out an additional 3.44&thinsp;% of VIIRS AOD retrievals, most of which were over high latitudes experiencing snowmelt. The new snow adjacency test and the homogeneity test degraded another 5.57&thinsp;% and 0.26&thinsp;%, respectively, otherwise good-quality AOD retrievals. For the VIIRS–AERONET (Aerosol Robotic Network) matchups over Northern Hemisphere high-latitude regions during 3 years of spring (2013–2015), the new scheme also effectively screened out a significant number of the matchups that had anomalously high positive biases attributable to snow and snowmelt contamination. The new snow and snowmelt screening scheme was transferred to the Interface Data Processing Segment (IDPS) VIIRS aerosol algorithm on 22 June 2015. Subsequently no significant snow and snowmelt contamination was found during spring 2016. The scheme is also implemented in the new Enterprise VIIRS aerosol algorithm in the National Oceanic and Atmospheric Administration (NOAA) Enterprise Processing System (EPS) that became operational in 2017.</p

    The Influence of Radiographic Phenotype and Smoking Status on Peripheral Blood Biomarker Patterns in Chronic Obstructive Pulmonary Disease

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is characterized by both airway remodeling and parenchymal destruction. The identification of unique biomarker patterns associated with airway dominant versus parenchymal dominant patterns would support the existence of unique phenotypes representing independent biologic processes. A cross-sectional study was performed to examine the association of serum biomarkers with radiographic airway and parenchymal phenotypes of COPD. Methodology/Principal Findings: Serum from 234 subjects enrolled in a CT screening cohort was analyzed for 33 cytokines and growth factors using a multiplex protein array. The association of serum markers with forced expiratory volume in one second percent predicted (FEV1%) and quantitative CT measurements of airway thickening and emphysema was assessed with and without stratification for current smoking status. Significant associations were found with several serum inflammatory proteins and measurements of FEV1%, airway thickening, and parenchymal emphysema independent of smoking status. The association of select analytes with airway thickening and emphysema was independent of FEV1%. Furthermore, the relationship between other inflammatory markers and measurements of physiologic obstruction or airway thickening was dependent on current smoking status. Conclusions/Significance: Airway and parenchymal phenotypes of COPD are associated with unique systemic serum biomarker profiles. Serum biomarker patterns may provide a more precise classification of the COPD syndrome, provide insights into disease pathogenesis and identify targets for novel patient-specific biological therapies. © 2009 Bon et al

    Aerosol optical depth (AOD) retrieval using simultaneous GOES-East and GOES-West reflected radiances over the western United States

    No full text
    Aerosol optical depth (AOD) in the western United States is observed independently by both the (Geostationary Operational Environmental Satellites) GOES-East and GOES-West imagers. The GASP (GOES Aerosol/Smoke Product) aerosol optical depth retrieval algorithm treats each satellite as a unique sensor and thus obtains two separate aerosol optical depth values at the same time for the same location. The TOA (the top of the atmosphere) radiances and the associated derived optical depths can be quite different due to the different viewing geometries with large difference in solar-scattering angles. In order to fully exploit the simultaneous observations and generate consistent AOD retrievals from the two satellites, the authors develop a new "hybrid" aerosol optical depth retrieval algorithm that uses data from both satellites. The algorithm uses both GOES-East and GOES-West visible channel TOA reflectance and daily average AOD from GOES Multi-Angle Implementation of Atmospheric Correction (GOES-MAIAC) on low AOD days (AOD less than 0.3), when diurnal variation of AOD is low, to retrieve surface BRDF (Bidirectional Reflectance Distribution Function). The known BRDF shape is applied on subsequent days to retrieve BRDF and AOD. The algorithm is validated at three AERONET sites over the western US. The AOD retrieval accuracy from the "hybrid" technique using the two satellites is similar to that from one satellite over UCSB (University of California Santa Barbara) and Railroad Valley, Nevada. Improvement of the accuracy is observed at Boulder, Colorado. The correlation coefficients between the GOES AOD and AERONET AOD are in the range of 0.67 to 0.81. More than 74% of AOD retrievals are within the error of &amp;plusmn;(0.05 + 0.15 &amp;tau;) compared to AERONET AOD. The hybrid algorithm has more data coverage compared to the single satellite retrievals over surfaces with high surface reflectance. For single observation areas the number of valid AOD data increases from the use of two-single satellite algorithms by 5–80% for the three sites. With the application of the new algorithm, consistent AOD retrievals and better retrieval coverages can be obtained using the data from the two GOES satellite imagers

    138-kV, six-phase transmission system: Fault analysis

    No full text
    In the past decade, transmission planners and researchers have been keenly investigating the feasibility of six-phase concept as a planning alternative. The concept, if proved feasible, would alleviate the problem of acquiring additional rights-of-way to meet the increase in electric power and energy demand. Allegheny Power System (APS) has been Investigating the conversion of some of their 138-kV three-phase double-circuit lines to 138-kV six-phase lines. The latter is an alternate option to 230-kV three-phase upgrading of the line. This paper addresses one aspect of the APS investigation, namely, fault analysis. It first discusses the greater variety of fault types that could arise on a six-phase line. It is then followed by the description of a technique for evaluating source impedances at the two ends of the line. The fault analysis by the phase coordinate method is delineated for one type of unfamiliar fault in the following section of the paper. The analytical results are presented for all types of significant faults that could occur on a six-phase line. Summary and results conclude the paper. The entire paper is developed by focusing the attention on a specific line in the APS territory. The contents of the paper should be of direct benefit to utility engineers. Copyright © 1982 by The Institute of Electrical and Electronics Engineers, Inc
    corecore