31 research outputs found

    Approaches to Identify Inhibitors of Melanin Biosynthesis via the Quality Control of Tyrosinase

    Get PDF
    Tyrosinase, a copper-containing glycoprotein, is the rate-limiting enzyme critical for melanin biosynthesis in specialized organelles termed melanosomes that are produced only by melanocytic cells. Inhibitors of tyrosinase activity have long been sought as therapeutic means to treat cutaneous hyperpigmentary disorders. Multiple potential approaches exist that could control pigmentation via the regulation of tyrosinase activity, for example: the transcription of its messenger RNA, its maturation via glycosylation, its trafficking to melanosomes, as well as modulation of its catalytic activity and/or stability. However, relatively little attention has been paid to regulating pigmentation via the stability of tyrosinase, which depends on its processing and maturation in the endoplasmic reticulum and Golgi, its delivery to melanosomes and its degradation via the ubiquitin-proteasome pathway and/or the endosomal/lysosomal system. Recently, it has been shown that carbohydrate modification, molecular chaperone engagement, and ubiquitylation all play pivotal roles in regulating the degradation/stability of tyrosinase. While such processes affect virtually all proteins, such effects on tyrosinase have immediate and dramatic consequences on pigmentation. In this review, we classify melanogenic inhibitory factors in terms of their modulation of tyrosinase function and we summarize current understanding of how the quality control of tyrosinase processing impacts its stability and melanogenic activity

    MDM2 is a novel E3 ligase for HIV-1 Vif

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) Vif plays a crucial role in the viral life cycle by antagonizing a host restriction factor APOBEC3G (A3G). Vif interacts with A3G and induces its polyubiquitination and subsequent degradation via the formation of active ubiquitin ligase (E3) complex with Cullin5-ElonginB/C. Although Vif itself is also ubiquitinated and degraded rapidly in infected cells, precise roles and mechanisms of Vif ubiquitination are largely unknown. Here we report that MDM2, known as an E3 ligase for p53, is a novel E3 ligase for Vif and induces polyubiquitination and degradation of Vif. We also show the mechanisms by which MDM2 only targets Vif, but not A3G that binds to Vif. MDM2 reduces cellular Vif levels and reversely increases A3G levels, because the interaction between MDM2 and Vif precludes A3G from binding to Vif. Furthermore, we demonstrate that MDM2 negatively regulates HIV-1 replication in non-permissive target cells through Vif degradation. These data suggest that MDM2 is a regulator of HIV-1 replication and might be a novel therapeutic target for anti-HIV-1 drug

    Molecular karyotyping in 17 patients and mutation screening in 41 patients with Kabuki syndrome.

    Get PDF
    The Kabuki syndrome (KS, OMIM 147920), also known as the Niikawa-Kuroki syndrome, is a multiple congenital anomaly/mental retardation syndrome characterized by a distinct facial appearance. The cause of KS has been unidentified, even by whole-genome scan with array comparative genomic hybridization (CGH). In recent years, high-resolution oligonucleotide array technologies have enabled us to detect fine copy number alterations. In 17 patients with KS, molecular karyotyping was carried out with GeneChip 250K NspI array (Affymetrix) and Copy Number Analyser for GeneChip (CNAG). It showed seven copy number alterations, three deleted regions and four duplicated regions among the patients, with the exception of registered copy number variants (CNVs). Among the seven loci, only the region of 9q21.11-q21.12 ( approximately 1.27 Mb) involved coding genes, namely, transient receptor potential cation channel, subfamily M, member 3 (TRPM3), Kruppel-like factor 9 (KLF9), structural maintenance of chromosomes protein 5 (SMC5) and MAM domain containing 2 (MAMDC2). Mutation screening for the genes detected 10 base substitutions consisting of seven single-nucleotide polymorphisms (SNPs) and three silent mutations in 41 patients with KS. Our study could not show the causative genes for KS, but the locus of 9q21.11-q21.12, in association with a cleft palate, may contribute to the manifestation of KS in the patient. As various platforms on oligonucleotide arrays have been developed, higher resolution platforms will need to be applied to search tiny genomic rearrangements in patients with KS.Journal of Human Genetics (2009) 54, 304-309; doi:10.1038/jhg.2009.30; published online 03 April 2009

    Evaluation of Tissue Behavior on Three-dimensional Collagen Scaffold Coated with Carbon Nanotubes and β-tricalcium Phosphate Nanoparticles

    Get PDF
    We generated a three-dimensional collagen scaffold coated with carbon nanotubes (CNTs) and β-tricalcium phosphate (β-TCP) nanoparticles and histologically evaluated tissue behavior toward the nanomodified scaffold after subcutaneous tissue implantation in rat. Scanning electron microscopy images of the nanomodified scaffold showed that the collagen surface was enveloped by a meshwork of CNTs and dispersed β-TCP nanoparticles. Histological observations indicated that application of CNTs and β-TCP nanoparticles increased cell and blood vessel penetration into the collagen scaffold. CNTs consistently stimulated giant cell aggregation. In addition, CNTs and β-TCP application to the scaffold significantly promoted the DNA content of infiltrating cells and scaffold biodegradation compared to the untreated scaffold. The nanomodified scaffold coated with CNTs and β-TCP nanoparticles would be beneficial for tissue engineering therapy

    Biological Response to Nanostructure of Carbon Nanotube/titanium Composite Surfaces

    Get PDF
    Titanium (Ti) is frequently used as a biomaterial in dental and orthopedic implants and in bone fixation devices. Effective modification of the Ti surface plays a crucial role in improving biocompatibility. Carbon nanotubes (CNTs) are among the most interesting nanomaterials due to their unique properties. In this study, we fabricated CNT-Ti composite surfaces by annealing Ti plates covered by different sized CNTs (Nanocyl NC 7000, 9.5 nm diameter and VGCF-H, 150 nm diameter). The properties of these surfaces were examined by scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, raman spectroscopy, contact angle measurement and osteoblast-like cell seeding. In addition, samples were implanted into the subcutaneous tissue of rats. The three-dimensional nanostructures of CNTs and creation of titanium carbide were evident on the Ti surfaces, suggesting that the CNTs were well-anchored onto the Ti plates. CNT modification promoted desirable cell behavior, including cell spreading and proliferation, especially on the Nanocyl-modified surface. Inflammatory response was rarely observed on the Nanocyl surface, but macrophage-like giant cells were frequently observed on the VGCF-H surface. Therefore, the nanomorphology of narrow diameter CNTs provides a CNT-Ti composite surface with good biocompatibility

    Evaluation of [125I]IPOS as a molecular imaging probe for hypoxia-inducible factor-1-active regions in a tumor: comparison among single-photon emission computed tomography/X-ray computed tomography imaging, autoradiography, and immunohistochemistry.

    Get PDF
    To image hypoxia-inducible factor-1 (HIF-1)-active tumors, we previously developed a chimeric protein probe ([(123/125) I]IPOS) that is degraded in the same manner as HIF-1α under normoxic conditions. In the present study, we aim to show that the accumulation of radioiodinated POS reflects the expression of HIF-1. In vivo single-photon emission computed tomography (SPECT)/X-ray CT (CT) imaging, autoradiography, and double-fluorescent immunostaining for HIF-1α and pimonidazole (PIMO) were carried out 24 h after the injection of [(125) I]IPOS. Tumor metabolite analysis was also carried out. A tumor was clearly visualized by multi-pinhole, high-resolution SPECT/CT imaging with [(125) I]IPOS. The obtained images were in accordance with the corresponding autoradiograms and with the results of ex vivo biodistribution. A metabolite analysis revealed that 77% of the radioactivity was eluted in the macromolecular fraction, suggesting that the radioactivity mainly existed as [(125) I]IPOS in the tumors. Immunohistochemistry revealed that the HIF-1α-positive areas and PIMO-positive areas were not always identical, only some of the regions were positive for both markers. The areas showing [(125) I]IPOS accumulation were positively and significantly correlated with the HIF-1α-positive areas (R = 0.75, P < 0.0001). The correlation coefficient between [(125) I]IPOS-accumulated areas and HIF-1α-positive areas was significantly greater than that between the [(125) I]IPOS-accumulated areas and the PIMO-positive areas (P < 0.01). These findings indicate that [(125) I]IPOS accumulation reflects HIF-1 expression. Thus, [(123/125) I]IPOS can serve as a useful probe for the molecular imaging of HIF-1-active tumors

    Medaka as a model for ECG analysis and the effect of verapamil

    No full text
    The heart of the medaka, a small fish native to East Asia, has electrophysiological aspects similar to mammalian hearts. We found that the heart rates of medaka were more similar to humans than mice or rats. Medaka exhibited similar electrocardiogram patterns to those of humans, suggesting a similarity in cardiac impulse formation and propagation. Their hearts also exhibited similar responsiveness to verapamil, a calcium channel antagonist; atropine, a parasympathetic nerve blocker; propranolol, a sympathetic β-adrenergic blocker; and isoproterenol, a sympathetic β-adrenergic agonist. We successfully analyzed action potentials and cardiac contractile forces in vivo. Verapamil affected action potential duration and reduced heart rate, suggesting the importance of voltage-dependent calcium channels in determining the heart rhythm of medaka. We also analyzed the expression of the voltage-dependent calcium channel β2 subunit, which participates in channel formation in cardiac myocytes, and found that splice variant type-2 was the only major transcript in the heart. Our results indicate that medaka could be an appropriate animal model for studying cardiovascular pharmacology

    In Vivo Visualization of Heterogeneous Intratumoral Distribution of Hypoxia-Inducible Factor-1α Activity by the Fusion of High-Resolution SPECT and Morphological Imaging Tests

    No full text
    Purpose. We aimed to clearly visualize heterogeneous distribution of hypoxia-inducible factor 1α (HIF) activity in tumor tissues in vivo. Methods. We synthesized of 125I-IPOS, a 125I labeled chimeric protein probe, that would visualize HIF activity. The biodistribution of 125I-IPOS in FM3A tumor-bearing mice was evaluated. Then, the intratumoral localization of this probe was observed by autoradiography, and it was compared with histopathological findings. The distribution of 125I-IPOS in tumors was imaged by a small animal SPECT/CT scanner. The obtained in vivo SPECT-CT fusion images were compared with ex vivo images of excised tumors. Fusion imaging with MRI was also examined. Results. 125I-IPOS well accumulated in FM3A tumors. The intratumoral distribution of 125I-IPOS by autoradiography was quite heterogeneous, and it partially overlapped with that of pimonidazole. High-resolution SPECT-CT fusion images successfully demonstrated the heterogeneity of 125I-IPOS distribution inside tumors. SPECT-MRI fusion images could give more detailed information about the intratumoral distribution of 125I-IPOS. Conclusion. High-resolution SPECT images successfully demonstrated heterogeneous intratumoral distribution of 125I-IPOS. SPECT-CT fusion images, more favorably SPECT-MRI fusion images, would be useful to understand the features of heterogeneous intratumoral expression of HIF activity in vivo
    corecore