16,014 research outputs found

    Transverse Ward-Takahashi Identity, Anomaly and Schwinger-Dyson Equation

    Get PDF
    Based on the path integral formalism, we rederive and extend the transverse Ward-Takahashi identities (which were first derived by Yasushi Takahashi) for the vector and the axial vector currents and simultaneously discuss the possible anomaly for them. Subsequently, we propose a new scheme for writing down and solving the Schwinger-Dyson equation in which the the transverse Ward-Takahashi identity together with the usual (longitudinal) Ward-Takahashi identity are applied to specify the fermion-boson vertex function. Especially, in two dimensional Abelian gauge theory, we show that this scheme leads to the exact and closed Schwinger-Dyson equation for the fermion propagator in the chiral limit (when the bare fermion mass is zero) and that the Schwinger-Dyson equation can be exactly solved.Comment: 22 pages, latex, no figure

    Prediction of the capacitance lineshape in two-channel quantum dots

    Full text link
    We propose a set-up to realize two-channel Kondo physics using quantum dots. We discuss how the charge fluctuations on a small dot can be accessed by using a system of two single electron transistors arranged in parallel. We derive a microscopic Hamiltonian description of the set-up that allows us to make connection with the two-channel Anderson model (of extended use in the context of heavy-Fermion systems) and in turn make detailed predictions for the differential capacitance of the dot. We find that its lineshape, which we determined precisely, shows a robust behavior that should be experimentally verifiable.Comment: 4 pages, 3 figure

    Realization of Strong Coupling Fixed Point in Multilevel Kondo Models

    Full text link
    Impurity four- and six-level Kondo model, in which an ion is tunneling among four- and six-stable points and interacting with surrounding conduction electrons, are investigated by using the perturbative and numerical renormalization group methods. It is shown that purely orbital Kondo effects occur at low temperatures in these systems which are direct generalizations of the Kondo effect in the so-called two-level system. This result offers a good explanation for the enhanced and magnetically robust Sommerfeld coefficient observed in SmOs_4Sb_12 and some other filled-skutterudites.Comment: 3 pages, 3 figures, for proceedings of ASR-WYP-2005. To be published in Journal of Physical Society Japan supplemen

    On ghost condensation, mass generation and Abelian dominance in the Maximal Abelian Gauge

    Get PDF
    Recent work claimed that the off-diagonal gluons (and ghosts) in pure Yang-Mills theories, with Maximal Abelian gauge fixing (MAG), attain a dynamical mass through an off-diagonal ghost condensate. This condensation takes place due to a quartic ghost interaction, unavoidably present in MAG for renormalizability purposes. The off-diagonal mass can be seen as evidence for Abelian dominance. We discuss why ghost condensation of the type discussed in those works cannot be the reason for the off-diagonal mass and Abelian dominance, since it results in a tachyonic mass. We also point out what the full mechanism behind the generation of a real mass might look like.Comment: 7 pages; uses revtex

    Two-Band-Type Superconducting Instability in MgB2

    Full text link
    Using the tight-binding method for the π\pi-bands in MgB2_2, the Hubbard on-site Coulomb interaction on two inequivalent boron pzp_z-orbitals is transformed into expressions in terms of π\pi-band operators. For scattering processes relevant to the problemin which a wave vector {\bf q} is parallel to z^\hat{z}, it is found to take a relatively simple form consisting of intra-band Coulomb scattering, interband pair scattering etc. with large constant coupling constants. This allows to get a simple expression for the amplitude of interband pair scattering between two π\pi-bands, which diverges if the interband polarization function in it becomes large enough.The latter was approximately evaluated and found to be largely enhanced in the band structure in MgB2_2. These results lead to a divergent interband pair scattering, meaning two-band-type superconducting instability with enhanced TcT_c. Adding a subsidiary BCS attractive interaction in each band into consideration, a semi-quantitative gap equation is given, and TcT_c and isotope exponent α\alpha are derived. The present instability is asserted to be the origin of high TcT_c in MgB2_2.Comment: 4 pages, to be published in J. Phys. Soc. Jpn. vol. 70, No.

    Superconductivity Driven by the Interband Coulomb Interaction and Implications for the Superconducting Mechanism of MgB2

    Full text link
    Superconducting mechanism mediated by interband exchange Coulomb repulsion is examined in an extended two-band Hubbard models with a wide band crossing the Fermi level and coexisting with a narrower band located at moderately lower energy. We apply newly developed path-integral renormalization group method to reliably calculate pairing correlations. The correlation shows marked enhancement at moderate amplitudes of the exchange Coulomb repulsion taken smaller than the on-site repulsion for the narrower band. The pairing symmetry is s-wave while it has unconventional phases with the opposite sign between the order parameters on the two bands, in agreement with the mean-field prediction. Since the band structure of recently discovered superconductor MgB2_2 shares basic similarities with our model, we propose that the present results provide a relevant clue for the understanding of the superconducting mechanism in MgB2_2 as well as in this class of multi-band materials with good metallic conduction in the normal state.Comment: 4pages, 2figure

    Renormalizing a BRST-invariant composite operator of mass dimension 2 in Yang-Mills theory

    Get PDF
    We discuss the renormalization of a BRST and anti-BRST invariant composite operator of mass dimension 2 in Yang-Mills theory with the general BRST and anti-BRST invariant gauge fixing term of the Lorentz type. The interest of this study stems from a recent claim that the non-vanishing vacuum condensate of the composite operator in question can be an origin of mass gap and quark confinement in any manifestly covariant gauge, as proposed by one of the authors. First, we obtain the renormalization group flow of the Yang-Mills theory. Next, we show the multiplicative renormalizability of the composite operator and that the BRST and anti-BRST invariance of the bare composite operator is preserved under the renormalization. Third, we perform the operator product expansion of the gluon and ghost propagators and obtain the Wilson coefficient corresponding to the vacuum condensate of mass dimension 2. Finally, we discuss the connection of this work with the previous works and argue the physical implications of the obtained results.Comment: 49 pages, 35 eps-files, A number of typographic errors are corrected. A paragraph is added in the beginning of section 5.3. Two equations (7.1) and (7.2) are added. A version to be published in Phys. Rev.

    Self-interaction effects on screening in three-dimensional QED

    Get PDF
    We have shown that self interaction effects in massive quantum electrodynamics can lead to the formation of bound states of quark antiquark pairs. A current-current fermion coupling term is introduced, which induces a well in the potential energy profile. Explicit expressions of the effective potential and renormalized parameters are provided
    • …
    corecore