16,014 research outputs found
Transverse Ward-Takahashi Identity, Anomaly and Schwinger-Dyson Equation
Based on the path integral formalism, we rederive and extend the transverse
Ward-Takahashi identities (which were first derived by Yasushi Takahashi) for
the vector and the axial vector currents and simultaneously discuss the
possible anomaly for them. Subsequently, we propose a new scheme for writing
down and solving the Schwinger-Dyson equation in which the the transverse
Ward-Takahashi identity together with the usual (longitudinal) Ward-Takahashi
identity are applied to specify the fermion-boson vertex function. Especially,
in two dimensional Abelian gauge theory, we show that this scheme leads to the
exact and closed Schwinger-Dyson equation for the fermion propagator in the
chiral limit (when the bare fermion mass is zero) and that the Schwinger-Dyson
equation can be exactly solved.Comment: 22 pages, latex, no figure
Prediction of the capacitance lineshape in two-channel quantum dots
We propose a set-up to realize two-channel Kondo physics using quantum dots.
We discuss how the charge fluctuations on a small dot can be accessed by using
a system of two single electron transistors arranged in parallel. We derive a
microscopic Hamiltonian description of the set-up that allows us to make
connection with the two-channel Anderson model (of extended use in the context
of heavy-Fermion systems) and in turn make detailed predictions for the
differential capacitance of the dot. We find that its lineshape, which we
determined precisely, shows a robust behavior that should be experimentally
verifiable.Comment: 4 pages, 3 figure
Realization of Strong Coupling Fixed Point in Multilevel Kondo Models
Impurity four- and six-level Kondo model, in which an ion is tunneling among
four- and six-stable points and interacting with surrounding conduction
electrons, are investigated by using the perturbative and numerical
renormalization group methods. It is shown that purely orbital Kondo effects
occur at low temperatures in these systems which are direct generalizations of
the Kondo effect in the so-called two-level system. This result offers a good
explanation for the enhanced and magnetically robust Sommerfeld coefficient
observed in SmOs_4Sb_12 and some other filled-skutterudites.Comment: 3 pages, 3 figures, for proceedings of ASR-WYP-2005. To be published
in Journal of Physical Society Japan supplemen
On ghost condensation, mass generation and Abelian dominance in the Maximal Abelian Gauge
Recent work claimed that the off-diagonal gluons (and ghosts) in pure
Yang-Mills theories, with Maximal Abelian gauge fixing (MAG), attain a
dynamical mass through an off-diagonal ghost condensate. This condensation
takes place due to a quartic ghost interaction, unavoidably present in MAG for
renormalizability purposes. The off-diagonal mass can be seen as evidence for
Abelian dominance. We discuss why ghost condensation of the type discussed in
those works cannot be the reason for the off-diagonal mass and Abelian
dominance, since it results in a tachyonic mass. We also point out what the
full mechanism behind the generation of a real mass might look like.Comment: 7 pages; uses revtex
Two-Band-Type Superconducting Instability in MgB2
Using the tight-binding method for the -bands in MgB, the Hubbard
on-site Coulomb interaction on two inequivalent boron -orbitals is
transformed into expressions in terms of -band operators. For scattering
processes relevant to the problemin which a wave vector {\bf q} is parallel to
, it is found to take a relatively simple form consisting of
intra-band Coulomb scattering, interband pair scattering etc. with large
constant coupling constants. This allows to get a simple expression for the
amplitude of interband pair scattering between two -bands, which diverges
if the interband polarization function in it becomes large enough.The latter
was approximately evaluated and found to be largely enhanced in the band
structure in MgB. These results lead to a divergent interband pair
scattering, meaning two-band-type superconducting instability with enhanced
. Adding a subsidiary BCS attractive interaction in each band into
consideration, a semi-quantitative gap equation is given, and and isotope
exponent are derived. The present instability is asserted to be the
origin of high in MgB.Comment: 4 pages, to be published in J. Phys. Soc. Jpn. vol. 70, No.
Superconductivity Driven by the Interband Coulomb Interaction and Implications for the Superconducting Mechanism of MgB2
Superconducting mechanism mediated by interband exchange Coulomb repulsion is
examined in an extended two-band Hubbard models with a wide band crossing the
Fermi level and coexisting with a narrower band located at moderately lower
energy. We apply newly developed path-integral renormalization group method to
reliably calculate pairing correlations. The correlation shows marked
enhancement at moderate amplitudes of the exchange Coulomb repulsion taken
smaller than the on-site repulsion for the narrower band. The pairing symmetry
is s-wave while it has unconventional phases with the opposite sign between the
order parameters on the two bands, in agreement with the mean-field prediction.
Since the band structure of recently discovered superconductor MgB shares
basic similarities with our model, we propose that the present results provide
a relevant clue for the understanding of the superconducting mechanism in
MgB as well as in this class of multi-band materials with good metallic
conduction in the normal state.Comment: 4pages, 2figure
Renormalizing a BRST-invariant composite operator of mass dimension 2 in Yang-Mills theory
We discuss the renormalization of a BRST and anti-BRST invariant composite
operator of mass dimension 2 in Yang-Mills theory with the general BRST and
anti-BRST invariant gauge fixing term of the Lorentz type. The interest of this
study stems from a recent claim that the non-vanishing vacuum condensate of the
composite operator in question can be an origin of mass gap and quark
confinement in any manifestly covariant gauge, as proposed by one of the
authors. First, we obtain the renormalization group flow of the Yang-Mills
theory. Next, we show the multiplicative renormalizability of the composite
operator and that the BRST and anti-BRST invariance of the bare composite
operator is preserved under the renormalization. Third, we perform the operator
product expansion of the gluon and ghost propagators and obtain the Wilson
coefficient corresponding to the vacuum condensate of mass dimension 2.
Finally, we discuss the connection of this work with the previous works and
argue the physical implications of the obtained results.Comment: 49 pages, 35 eps-files, A number of typographic errors are corrected.
A paragraph is added in the beginning of section 5.3. Two equations (7.1) and
(7.2) are added. A version to be published in Phys. Rev.
Self-interaction effects on screening in three-dimensional QED
We have shown that self interaction effects in massive quantum
electrodynamics can lead to the formation of bound states of quark antiquark
pairs. A current-current fermion coupling term is introduced, which induces a
well in the potential energy profile. Explicit expressions of the effective
potential and renormalized parameters are provided
- …