22,143 research outputs found

    Transverse Ward-Takahashi Identity, Anomaly and Schwinger-Dyson Equation

    Get PDF
    Based on the path integral formalism, we rederive and extend the transverse Ward-Takahashi identities (which were first derived by Yasushi Takahashi) for the vector and the axial vector currents and simultaneously discuss the possible anomaly for them. Subsequently, we propose a new scheme for writing down and solving the Schwinger-Dyson equation in which the the transverse Ward-Takahashi identity together with the usual (longitudinal) Ward-Takahashi identity are applied to specify the fermion-boson vertex function. Especially, in two dimensional Abelian gauge theory, we show that this scheme leads to the exact and closed Schwinger-Dyson equation for the fermion propagator in the chiral limit (when the bare fermion mass is zero) and that the Schwinger-Dyson equation can be exactly solved.Comment: 22 pages, latex, no figure

    Detection of local-moment formation using the resonant interaction between coupled quantum wires

    Full text link
    We study the influence of many-body interactions on the transport characteristics of a novel device structure, consisting of a pair of quantum wires that are coupled to each other by means of a quantum dot. Under conditions where a local magnetic moment is formed in one of the wires, we show that tunnel coupling to the other gives rise to an associated peak in its density of states, which can be detected directly in a conductance measurement. Our theory is therefore able to account for the key observations in the recent study of T. Morimoto et al. [Appl. Phys. Lett. {\bf 82}, 3952 (2003)], and demonstrates that coupled quantum wires may be used as a system for the detection of local magnetic-moment formation

    Compact lattice formulation of Cho-Faddeev-Niemi decomposition: string tension from magnetic monopoles

    Get PDF
    In this paper we begin on a new lattice formulation of the non-linear change of variables called the Cho--Faddeev--Niemi decomposition in SU(2) Yang-Mills theory. This is a compact lattice formulation improving the non-compact lattice formulation proposed in our previous paper. Based on this formulation, we propose a new gauge-invariant definition of the magnetic monopole current which guarantees the magnetic charge quantization and reproduces the conventional magnetic-current density obtained in the Abelian projection based on the DeGrand--Toussaint method. Finally, we demonstrate the magnetic monopole dominance in the string tension in SU(2) Yang-Mills theory on a lattice. Our formulation enables one to reproduce in the gauge-invariant way remarkable results obtained so far only in the Maximally Abelian gauge.Comment: 14 pages, v2: minor corrections; v3: explanations added and improve

    Interacting with digital media at home via a second screen

    Get PDF
    In recent years Interactive Television (iTV) has become a household technology on a global scale. However, iTV is still a new technology in the early stages of its evolution. Our previous research looked at how everyday users of iTV feel about the interactive part of iTV. In a series of studies we investigated how people use iTV services; their likes, dislikes, preferences and opinions. We then developed a second screen-based prototype device in response to these findings and tested it with iTV users in their own homes. This is a work in progress paper that outlines the work carried previously in the area of controlling interactive Television via a second screen. The positive user responses led us to extend the scope of our previous research to look into other related areas such as barriers to digital interactive media and personalisation of digital interactive media at home

    Prediction of the capacitance lineshape in two-channel quantum dots

    Full text link
    We propose a set-up to realize two-channel Kondo physics using quantum dots. We discuss how the charge fluctuations on a small dot can be accessed by using a system of two single electron transistors arranged in parallel. We derive a microscopic Hamiltonian description of the set-up that allows us to make connection with the two-channel Anderson model (of extended use in the context of heavy-Fermion systems) and in turn make detailed predictions for the differential capacitance of the dot. We find that its lineshape, which we determined precisely, shows a robust behavior that should be experimentally verifiable.Comment: 4 pages, 3 figure

    KUV 01584-0939: A Helium-transferring Cataclysmic Variable with an Orbital Period of 10 Minutes

    Full text link
    High speed photometry of KUV 01584-0939 (alias Cet3) shows that is has a period of 620.26 s. Combined with its hydrogen-deficient spectrum, this implies that it is an AM CVn star. The optical modulation is probably a superhump, in which case the orbital period will be slightly shorter than what we have observed.Comment: Published by PASP. See also the latest Early-Release Research Paper website of the PAS

    A formulation of the Yang-Mills theory as a deformation of a topological field theory based on background field method and quark confinement problem

    Get PDF
    By making use of the background field method, we derive a novel reformulation of the Yang-Mills theory which was proposed recently by the author to derive quark confinement in QCD. This reformulation identifies the Yang-Mills theory with a deformation of a topological quantum field theory. The relevant background is given by the topologically non-trivial field configuration, especially, the topological soliton which can be identified with the magnetic monopole current in four dimensions. We argue that the gauge fixing term becomes dynamical and that the gluon mass generation takes place by a spontaneous breakdown of the hidden supersymmetry caused by the dimensional reduction. We also propose a numerical simulation to confirm the validity of the scheme we have proposed. Finally we point out that the gauge fixing part may have a geometric meaning from the viewpoint of global topology where the magnetic monopole solution represents the critical point of a Morse function in the space of field configurations.Comment: 45 pages, 3 figures included in LaTe

    Renormalizing a BRST-invariant composite operator of mass dimension 2 in Yang-Mills theory

    Get PDF
    We discuss the renormalization of a BRST and anti-BRST invariant composite operator of mass dimension 2 in Yang-Mills theory with the general BRST and anti-BRST invariant gauge fixing term of the Lorentz type. The interest of this study stems from a recent claim that the non-vanishing vacuum condensate of the composite operator in question can be an origin of mass gap and quark confinement in any manifestly covariant gauge, as proposed by one of the authors. First, we obtain the renormalization group flow of the Yang-Mills theory. Next, we show the multiplicative renormalizability of the composite operator and that the BRST and anti-BRST invariance of the bare composite operator is preserved under the renormalization. Third, we perform the operator product expansion of the gluon and ghost propagators and obtain the Wilson coefficient corresponding to the vacuum condensate of mass dimension 2. Finally, we discuss the connection of this work with the previous works and argue the physical implications of the obtained results.Comment: 49 pages, 35 eps-files, A number of typographic errors are corrected. A paragraph is added in the beginning of section 5.3. Two equations (7.1) and (7.2) are added. A version to be published in Phys. Rev.
    • …
    corecore