66 research outputs found

    Biological Significance of HCV in Various Kinds of Lymphoid Cells

    Get PDF
    It has been reported that HCV can infect not only hepatocytes but also various kinds of lymphoid cells. Although many reports have described the biological significance of lymphotropic HCV, the issue remains controversial since the target lymphoid cells might have various kinds of functions in the immune system. One of the important roles of lymphoid cells in HCV replication is being a reservoir of HCV. Several groups described the detection of HCV-RNA in lymphoid cells after HCV eradication in plasma. Another important role of lymphotropic HCV is that it acts as a carcinogenic agent and induces immune dysfunction. In this paper, we summarize the reports regarding the biological significance of lymphotropic HCV in representative lymphoid cells

    Dysfunction of Immune Systems and Host Genetic Factors in Hepatitis C Virus Infection with Persistent Normal ALT

    Get PDF
    Patients with chronic hepatitis C (CHC) virus infection who have persistently normal alanine aminotransferase levels (PNALT) have mild inflammation and fibrosis in comparison to those with elevated ALT levels. The cellular immune responses to HCV are mainly responsible for viral clearance and the disease pathogenesis during infection. However, since the innate and adaptive immune systems are suppressed by various kinds of mechanisms in CHC patients, the immunopathogenesis of CHC patients with PNALT is still unclear. In this review, we summarize the representative reports about the immune suppression in CHC to better understand the immunopathogenesis of PNALT. Then, we summarize and speculate on the immunological aspects of PNALT including innate and adaptive immune systems and genetic polymorphisms of HLA and cytokines

    Toll-Like Receptors Signaling Contributes to Immunopathogenesis of HBV Infection

    Get PDF
    Innate and adaptive immune systems have important role in the pathogenesis of acute and chronic infection with hepatitis B virus (HBV). These immune responses are mediated through complex interactions between the innate immune response and adaptive immune response. Toll-like receptors (TLRs) are a family of innate immune-recognition receptors that recognize the molecular patterns associated with microbial pathogens. So far, TLR1 to 13 were found in human or mice and investigated to detect the target molecules and the downstream mechanisms of these unique systems. Stimulation by their ligands initiates the activation of complex networks of intracellular signaling transduction and innate and adaptive immune-related cells (NK, NK-T, monocytes, dendritic cells, T cells, B cells, and Tregs, etc.). However, reports on such relationships between HBV and TLRs have been relatively rare in comparison to those on HCV and TLRs, but have recently been increasing. Thus, a review of TLRs involved in the pathogenesis of HBV infection may be needed toward better understanding of the immunopathogenesis of HBV infection

    Enhanced intracellular retention of a hepatitis B virus strain associated with fulminant hepatitis

    Get PDF
    AbstractA plasmid carrying 1.3-fold HBV genome was constructed from a HBV strain that caused five consecutive cases of fulminant hepatitis (pBFH2), and HepG2 cells were transfected with pBFH2 or its variants. The pBFH2 construct with A1762T/G1764A, G1862T, and G1896A showed the largest amount of core particle-associated intracellular HBV DNA, but no significant increase of extracellular HBV DNA in comparison with the wild construct, suggesting that these mutations might work together for retention of the replicative intermediates in the cells. The retention might relate to the localization of hepatitis B core antigen (HBcAg) in the nucleus of HepG2, which was observed by confocal fluorescence microscopy. HBcAg immunohistochemical examination of liver tissue samples obtained from the consecutive fulminant hepatitis patients showed stronger staining in the nucleus than acute hepatitis patients. In conclusion, the fulminant HBV strain caused retention of the core particles and the core particle-associated HBV DNA in the cells

    Plasma L-Cystine/L-Glutamate Imbalance Increases Tumor Necrosis Factor-Alpha from CD14+ Circulating Monocytes in Patients with Advanced Cirrhosis

    Get PDF
    BACKGROUND AND AIMS: The innate immune cells can not normally respond to the pathogen in patients with decompensated cirrhosis. Previous studies reported that antigen-presenting cells take up L-Cystine (L-Cys) and secrete substantial amounts of L-Glutamate (L-Glu) via the transport system Xc- (4F2hc+xCT), and that this exchange influences the immune responses. The aim of this study is to investigate the influence of the plasma L-Cys/L-Glu imbalance observed in patients with advanced cirrhosis on the function of circulating monocytes. METHODS: We used a serum-free culture medium consistent with the average concentrations of plasma amino acids from patients with advanced cirrhosis (ACM), and examined the function of CD14+ monocytes or THP-1 under ACM that contained 0-300 nmol/mL L-Cys with LPS. In patients with advanced cirrhosis, we actually determined the TNF-alpha and xCT mRNA of monocytes, and evaluated the correlation between the plasma L-Cys/L-Glu ratio and TNF-alpha. RESULTS: The addition of L-Cys significantly increased the production of TNF alpha from monocytes under ACM. Monocytes with LPS and THP-1 expressed xCT and a high level of extracellular L-Cys enhanced L-Cys/L-Glu antiport, and the intracellular GSH/GSSG ratio was decreased. The L-Cys transport was inhibited by excess L-Glu. In patients with advanced cirrhosis (n = 19), the TNF-alpha and xCT mRNA of monocytes were increased according to the Child-Pugh grade. The TNF-alpha mRNA of monocytes was significantly higher in the high L-Cys/L-Glu ratio group than in the low ratio group, and the plasma TNF-alpha was significantly correlated with the L-Cys/L-Glu ratio. CONCLUSIONS: A plasma L-Cys/L-Glu imbalance, which appears in patients with advanced cirrhosis, increased the TNF-alpha from circulating monocytes via increasing the intracellular oxidative stress. These results may reflect the immune abnormality that appears in patients with decompensated cirrhosis

    Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway

    Get PDF
    AbstractThe molecular mechanisms of assembly and budding of hepatitis C virus (HCV) remain poorly understood. The budding of several enveloped viruses requires an endosomal sorting complex required for transport (ESCRT), which is part of the cellular machinery used to form multivesicular bodies (MVBs). Here, we demonstrated that Hrs, an ESCRT-0 component, is critical for the budding of HCV through the exosomal secretion pathway. Hrs depletion caused reduced exosome production, which paralleled with the decrease of HCV replication in the host cell, and that in the culture supernatant. Sucrose-density gradient separation of the culture supernatant of HCV-infected cells revealed the co-existence of HCV core proteins and the exosome marker. Furthermore, both the core protein and an envelope protein of HCV were detected in the intraluminal vesicles of MVBs. These results suggested that HCV secretion from host cells requires Hrs-dependent exosomal pathway in which the viral assembly is also involved

    Radiation therapy has been shown to be adaptable for various stages of hepatocellular carcinoma

    No full text
    corecore