222 research outputs found

    A collimated jet and an infalling-rotating disk in G192.16-3.84 traced by H2O maser emission

    Get PDF
    We report H2O masers associated with the massive-star forming region G192.16-3.84 observed with the new Japan VLBI network at three epochs spanned for two months, which have revealed the three-dimensional kinematical structure of the whole \h2o maser region in G192.16-3.84, containing two young stellar objects separated by ~1200 AU. The maser spatio-kinematical structure has well persisted since previous observations, in which the masers are expected to be associated with a highly-collimated bipolar jet and an infalling-rotating disk in the northern and southern clusters of H2O maser features, respectively. We estimated a jet expansion speed of ~100 km/s and re-estimated a dynamical age of the whole jet to be 5.6x10^4 yrs. We have investigated the spatial distribution of Doppler velocities during the previous and present observations and relative proper motions of H2O maser features in the southern cluster, and a relative bulk motion between the two maser clusters. They are well explained by a model of an infalling-rotating disk with a radius of ~1000 AU and a central stellar mass of 5-10 M_sun, rather than by a model of a bipolar jet perpendicular to the observed CO outflow. Based on the derived H2O maser spatio-kinematical parameters, we discuss the formation mechanism of the massive young stellar objects and the outflow development in G192.16-3.84.Comment: 30 pages, 3 figures, 3 tables, to be published in the Publication of the Astronomical Society of Japan issued on 2006 October 2

    Atmospheric Delay Reduction Using KARAT for GPS Analysis and Implications for VLBI

    Get PDF
    We have been developing a state-of-the-art tool to estimate the atmospheric path delays by raytracing through mesoscale analysis (MANAL) data, which is operationally used for numerical weather prediction by the Japan Meteorological Agency (JMA). The tools, which we have named KAshima RAytracing Tools (KARAT)', are capable of calculating total slant delays and ray-bending angles considering real atmospheric phenomena. The KARAT can estimate atmospheric slant delays by an analytical 2-D ray-propagation model by Thayer and a 3-D Eikonal solver. We compared PPP solutions using KARAT with that using the Global Mapping Function (GMF) and Vienna Mapping Function 1 (VMF1) for GPS sites of the GEONET (GPS Earth Observation Network System) operated by Geographical Survey Institute (GSI). In our comparison 57 stations of GEONET during the year of 2008 were processed. The KARAT solutions are slightly better than the solutions using VMF1 and GMF with linear gradient model for horizontal and height positions. Our results imply that KARAT is a useful tool for an efficient reduction of atmospheric path delays in radio-based space geodetic techniques such as GNSS and VLBI

    Wind Pressure Characteristics of High-rise buildings in Middle and High-height Urban Areas Spread over Local Terrain

    Get PDF
    In an urban area where middle and high-height buildings are densely built on a complex terrain, it is important for wind-resistant design to know what kind of strong wind blows during a typhoon and the wind pressure acts on the building. In this study, we focused on the wind of the wind direction SSE observed during typhoon LAN (2017), and investigated the relationship between the topography and the flow field around the buildings, and the wall surface pressure by LES. As a result, we clarified the complicated flow due to the interference between the target building and the local terrain and surrounding buildings. In addition, the validity was shown by comparing the wind pressure coefficient of LES with that of the wind tunnel experiment

    GPU Based Software Correlators - Perspectives for VLBI2010

    Get PDF
    Caused by historical separation and driven by the requirements of the PC gaming industry, Graphics Processing Units (GPUs) have evolved to massive parallel processing systems which entered the area of non-graphic related applications. Although a single processing core on the GPU is much slower and provides less functionality than its counterpart on the CPU, the huge number of these small processing entities outperforms the classical processors when the application can be parallelized. Thus, in recent years various radio astronomical projects have started to make use of this technology either to realize the correlator on this platform or to establish the post-processing pipeline with GPUs. Therefore, the feasibility of GPUs as a choice for a VLBI correlator is being investigated, including pros and cons of this technology. Additionally, a GPU based software correlator will be reviewed with respect to energy consumption/GFlop/sec and cost/GFlop/sec

    Round-Trip System Available to Measure Path Length Variation in Korea VLBI System for Geodesy

    Get PDF
    The construction project of Korea Geodetic VLBI officially started in October 2008. The construction of all systems will be completed by the end of 2011. The project was named Korea VLBI system for Geodesy (KVG), and its main purpose is to maintain the Korea Geodetic Datum. In case of the KVG system, an observation room with an H-maser frequency standard is located in a building separated from the antenna by several tens of meters. Therefore KVG system will adopt a so-called round-trip system to transmit reference signals to the antenna with reduction of the effect of path length variations. KVG s round-trip system is designed not only to use either metal or optical fiber cables, but also to measure path length variations directly. We present this unique round trip system for KVG

    13C/15Nā€Enriched Lā€Dopa as a Tripleā€Resonance NMR Probe to Monitor Neurotransmitter Dopamine in the Brain and Liver Extracts of Mice

    Get PDF
    In an attempt to monitor Ī¼M-level trace constituents, we applied here 1H-{13C-15N} triple-resonance nuclear magnetic resonance (NMR) to 13C/15N-enriched L-Dopa as the inevitable precursor of the neurotransmitter dopamine in the brain. The perfect selectivity (to render endogenous components silent) and Ī¼M-level sensitivity (700 MHz spectrometer equipped with a cryogenic probe) of triple-resonance allowed the unambiguous and quantitative metabolic and pharmacokinetic analyses of administered L-Dopa/dopamine in the brain and liver of mice. The level of dopamine generated in the brain (within the range 7ā€“76 Ī¼M, which covers the typical stimulated level of ~30 Ī¼M) could be clearly monitored ex vivo, but was slightly short of the detection limit of a 7T MR machine for small animals. This work suggests that Ī¼M-level trace constituents are potential targets of ex vivo monitoring as long as they contain N atom(s) and their appropriate 13C/15N-enrichment is synthetically accessible

    Embedded Planar Power Inductor in an Organic Interposer for Package-Level DC Power Grid

    Get PDF
    To realize the basic technology of a package-level dc power grid for the next generation power delivery to large scale integrated circuits (LSIs), two types of planar spiral inductors embedded in an organic interposer, for several tens of megahertz switching power supply integrated in LSI package, have been proposed. One is a Zn-Fe ferrite core spiral inductor, and another is a hybrid core spiral inductor, with quasi closed magnetic circuit consisting of the bottom Zn-Fe ferrite core and top carbonyl-iron/epoxy composite core. In this paper, the two types of planar spiral inductors have been fabricated and evaluated. From the experimental results, it was found that the hybrid core planar spiral inductor exhibited higher Q-factor and larger rating dc current than the Zn-Fe ferrite core inductor.ArticleIEEE TRANSACTIONS ON MAGNETICS. 50(11):8401304 (2014)journal articl

    Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study.

    Get PDF
    Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explains muscle activities for obstacle avoidance. Furthermore, central pattern generators in the spinal cord are thought to manage the timing to produce such basic patterns. In the present study, we investigated sensory-motor coordination for obstacle avoidance by the hindlimbs of the rat using a neuromusculoskeletal model. We constructed the musculoskeletal part of the model based on empirical anatomical data of the rat and the nervous system model based on the aforementioned physiological findings of central pattern generators and muscle synergy. To verify the dynamic simulation by the constructed model, we compared the simulation results with kinematic and electromyographic data measured during actual locomotion in rats. In addition, we incorporated sensory regulation models based on physiological evidence of phase resetting and interlimb coordination and examined their functional roles in stepping over an obstacle during locomotion. Our results show that the phase regulation based on interlimb coordination contributes to stepping over a higher obstacle and that based on phase resetting contributes to quick recovery after stepping over the obstacle. These results suggest the importance of sensory regulation in generating successful obstacle avoidance during locomotion
    • ā€¦
    corecore