46 research outputs found

    Vaccination with Human Induced Pluripotent Stem Cells Creates an Antigen-Specific Immune Response Against HIV-1 gp160

    Get PDF
    Induced pluripotent stem cells (iPSCs) are artificially derived from somatic cells that have been transduced with defined reprogramming factors. A previous report has indicated the possibility of using iPSCs as an immune stimulator to generate antigen-specific immunity. In our current study, we have investigated whether human iPSCs (hiPSCs) have the ability to enhance specific immune response against a human immunodeficiency virus type 1 (HIV-1) antigen in a xenogenic mouse model. Our results show that BALB/c mice immunized with hiPSCs transduced with an adenoviral vector encoding HIV-1 gp160 exhibited prominent antigen-specific cellular immune responses. We further found that pre-treatment of hiPSCs with ionizing radiation promotes the secretion of pro-inflammatory cytokines such as interleukin-1 alpha (IL-1α), IL-12, and IL-18. These cytokines might promote the activation of antigen-presenting cells and the effective induction of cellular immunity. Our present findings thus demonstrate that a hiPSCs-based vaccine has the potential to generate cellular immunity against viral antigens such as HIV-1 gp160 in a xenogenic condition

    Overexpression of TEAD4 in atypical teratoid/rhabdoid tumor: New insight to the pathophysiology of an aggressive brain tumor

    Full text link
    BackgroundAtypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant embryonal brain tumor that occurs mainly in early childhood. Although most of the tumors are characterized by inactivating mutations of the tumor suppressor gene, SMARCB1, the biological basis of its tumorigenesis and aggressiveness is still unknown.ProcedureWe performed high‐throughput copy number variation analysis of primary cell lines generated from primary and relapsed tumors from one of our patients to identify new genes involved in AT/RT biology. The expression of the identified gene was validated in 29 AT/RT samples by gene expression profiling, quantitative real‐time polymerase chain reaction, and immunohistochemistry (IHC). Furthermore, we investigated the function of this gene by mutating it in rhabdoid tumor cells.ResultsTEAD4 amplification was detected in the primary cell lines and its overexpression was confirmed at mRNA and protein levels in an independent cohort of AT/RT samples. TEAD4’s co‐activator, YAP1, and the downstream targets, MYC and CCND1, were also found to be upregulated in AT/RT when compared to medulloblastoma. IHC showed TEAD4 and YAP1 overexpression in all samples. Cell proliferation and migration were significantly reduced in TEAD4‐mutated cells.ConclusionsWe report the overexpression of TEAD4 in AT/RT, which is a key component of Hippo pathway. Recent reports revealed that dysregulation of the Hippo pathway is implicated in tumorigenesis and poor prognosis of several human cancers. Our results suggest that TEAD4 plays a role in the pathophysiology of AT/RT, which represents a new insight into the biology of this aggressive tumor.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137309/1/pbc26398_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137309/2/pbc26398.pd

    Effect of vagus nerve stimulation against generalized seizure and status epilepticus recurrence

    Get PDF
    ObjectiveVagus nerve stimulation (VNS) is a palliative surgery for drug-resistant epilepsy. The two objectives of this study were to (1) determine the seizure type most responsive to VNS and (2) investigate the preventive effect on status epilepticus (SE) recurrence.MethodsWe retrospectively reviewed 136 patients with drug-resistant epilepsy who underwent VNS implantation. We examined seizure outcomes at 6, 12, and 24 months following implantation of VNS as well as at the last visit to the Juntendo Epilepsy Center. Univariate analysis and multivariate logistic regression models were used to estimate the prognostic factors.Results125 patients were followed up for at least 1 year after VNS implantation. The percentage of patients with at least a 50% reduction in seizure frequency compared with prior to VNS implantation increased over time at 6, 12, and 24 months after VNS implantation: 28, 41, and 52%, respectively. Regarding overall seizure outcomes, 70 (56%) patients responded to VNS. Of the 40 patients with a history of SE prior to VNS implantation, 27 (67%) showed no recurrence of SE. The duration of epilepsy, history of SE prior to VNS implantation and seizure type were correlated with seizure outcomes after VNS implantation in univariate analysis (p = 0.05, p < 0.01, and p = 0.03, respectively). In multivariate logistic regression analysis, generalized seizure was associated with VNS response [odds ratio (OR): 4.18, 95% CI: 1.13–15.5, p = 0.03]. A history of SE prior to VNS implantation was associated with VNS non-responders [(OR): 0.221, 95% CI: 0.097–0.503, p < 0.01]. The duration of epilepsy, focal to bilateral tonic–clonic seizure and epileptic spasms were not significantly associated with VNS responders (p = 0.07, p = 0.71, and p = 0.11, respectively).ConclusionFollowing 125 patients with drug-resistant epilepsy for an average of 69 months, 56% showed at least 50% reduction in seizure frequency after VNS implantation. This study suggests that generalized seizure is the most responsive to VNS, and that VNS may reduce the risk of recurrence of SE. VNS was shown to be effective against generalized seizure and also may potentially influence the risk of further events of SE, two marker of disease treatment that can lead to improved quality of life

    Differentiating comorbidities and predicting prognosis in idiopathic normal pressure hydrocephalus using cerebrospinal fluid biomarkers: a review

    Get PDF
    Idiopathic normal pressure hydrocephalus (iNPH) is a condition resulting from impaired cerebrospinal fluid (CSF) absorption and excretion characterized by a triad of symptoms comprising dementia, gait disturbance (impaired trunk balance), and urinary incontinence. CSF biomarkers not only assist in diagnosis but are also important for analyzing the pathology and understanding appropriate treatment indications. As the neuropathological findings characteristic of iNPH have yet to be defined, there remains no method to diagnose iNPH with 100% sensitivity and specificity. Neurotoxic proteins are assumed to be involved in the neurological symptoms of iNPH, particularly the appearance of cognitive impairment. The symptoms of iNPH can be reversed by improving CSF turnover through shunting. However, early diagnosis is essential as once neurodegeneration has progressed, pathological changes become irreversible and symptom improvement is minimal, even after shunting. Combining a variety of diagnostic methods may lead to a more definitive diagnosis and accurate prediction of the prognosis following shunt treatment. Identifying comorbidities in iNPH using CSF biomarkers does not contraindicate shunting-based intervention, but does limit the improvement in symptoms it yields, and provides vital information for predicting post-treatment prognosi

    Intratracheal trimerized nanobody cocktail administration suppresses weight loss and prolongs survival of SARS-CoV-2 infected mice

    Get PDF
    新型コロナウイルスを中和するアルパカ抗体 --マウス実験で有効性を確認--. 京都大学プレスリリース. 2023-02-17.BACKGROUND: SARS-CoV-2 Omicron variants are highly resistant to vaccine-induced immunity and human monoclonal antibodies. METHODS: We previously reported that two nanobodies, P17 and P86, potently neutralize SARS-CoV-2 VOCs. In this study, we modified these nanobodies into trimers, called TP17 and TP86 and tested their neutralization activities against Omicron BA.1 and subvariant BA.2 using pseudovirus assays. Next, we used TP17 and TP86 nanobody cocktail to treat ACE2 transgenic mice infected with lethal dose of SARS-CoV-2 strains, original, Delta and Omicron BA.1. RESULTS: Here, we demonstrate that a novel nanobody TP86 potently neutralizes both BA.1 and BA.2 Omicron variants, and that the TP17 and TP86 nanobody cocktail broadly neutralizes in vitro all VOCs as well as original strain. Furthermore, intratracheal administration of this nanobody cocktail suppresses weight loss and prolongs survival of human ACE2 transgenic mice infected with SARS-CoV-2 strains, original, Delta and Omicron BA.1. CONCLUSIONS: Intratracheal trimerized nanobody cocktail administration suppresses weight loss and prolongs survival of SARS-CoV-2 infected mice
    corecore