637 research outputs found

    Effects of high order deformation on superheavy high-KK isomers

    Get PDF
    Using, for the first time, configuration-constrained potential-energy-surface calculations with the inclusion of β6\beta_6 deformation, we find remarkable effects of the high order deformation on the high-KK isomers in 254^{254}No, the focus of recent spectroscopy experiments on superheavy nuclei. For shapes with multipolarity six, the isomers are more tightly bound and, microscopically, have enhanced deformed shell gaps at N=152N=152 and Z=100Z=100. The inclusion of β6\beta_6 deformation significantly improves the description of the very heavy high-KK isomers.Comment: 5 pages, 4 figures, 1 table, the version to appear in Phys. Rev.

    End to end distance on contour loops of random gaussian surfaces

    Full text link
    A self consistent field theory that describes a part of a contour loop of a random Gaussian surface as a trajectory interacting with itself is constructed. The exponent \nu characterizing the end to end distance is obtained by a Flory argument. The result is compared with different previuos derivations and is found to agree with that of Kondev and Henley over most of the range of the roughening exponent of the random surface.Comment: 7 page

    Effective Field Theory of Triangular-Lattice Three-Spin Interaction Model

    Full text link
    We discuss an effective field theory of a triangular-lattice three-spin interaction model defined by the Zp{\mathbb Z}_p variables. Based on the symmetry properties and the ideal-state graph concept, we show that the vector dual sine-Gordon model describes the long-distance properties for p≥5p\ge5; we then compare its predictions with the previous argument. To provide the evidences, we numerically analyze the eigenvalue structure of the transfer matrix for p=6p=6, and we check the criticality with the central charge c=2c=2 of the intermediate phase and the quantization condition of the vector charges.Comment: 4 pages, 3 figure

    Correlated quantum percolation in the lowest Landau level

    Full text link
    Our understanding of localization in the integer quantum Hall effect is informed by a combination of semi-classical models and percolation theory. Motivated by the effect of correlations on classical percolation we study numerically electron localization in the lowest Landau level in the presence of a power-law correlated disorder potential. Careful comparisons between classical and quantum dynamics suggest that the extended Harris criterion is applicable in the quantum case. This leads to a prediction of new localization quantum critical points in integer quantum Hall systems with power-law correlated disorder potentials. We demonstrate the stability of these critical points to addition of competing short-range disorder potentials, and discuss possible experimental realizations.Comment: 15 pages, 12 figure

    Roughening Induced Deconstruction in (100) Facets of CsCl Type Crystals

    Full text link
    The staggered 6-vertex model describes the competition between surface roughening and reconstruction in (100) facets of CsCl type crystals. Its phase diagram does not have the expected generic structure, due to the presence of a fully-packed loop-gas line. We prove that the reconstruction and roughening transitions cannot cross nor merge with this loop-gas line if these degrees of freedom interact weakly. However, our numerical finite size scaling analysis shows that the two critical lines merge along the loop-gas line, with strong coupling scaling properties. The central charge is much larger than 1.5 and roughening takes place at a surface roughness much larger than the conventional universal value. It seems that additional fluctuations become critical simultaneously.Comment: 31 pages, 9 figure

    Elasticity of semiflexible polymers in two dimensions

    Full text link
    We study theoretically the entropic elasticity of a semi-flexible polymer, such as DNA, confined to two dimensions. Using the worm-like-chain model we obtain an exact analytical expression for the partition function of the polymer pulled at one end with a constant force. The force-extension relation for the polymer is computed in the long chain limit in terms of Mathieu characteristic functions. We also present applications to the interaction between a semi-flexible polymer and a nematic field, and derive the nematic order parameter and average extension of the polymer in a strong field.Comment: 16 pages, 3 figure

    Efficiency of symmetric targeting for finite-T DMRG

    Full text link
    Two targeting schemes have been known for the density matrix renormalization group (DMRG) applied to non-Hermitian problems; one uses an asymmetric density matrix and the other uses symmetric density matrix. We compare the numerical efficiency of these two targeting schemes when they are used for the finite temperature DMRG.Comment: 4 pages, 3 Postscript figures, REVTe

    From chiral vibration to static chirality in ^{135}Nd

    Full text link
    Electromagnetic transition probabilities have been measured for the intra- and inter-band transitions in the two sequences in the nucleus ^{135}Nd that were previously identified as a composite chiral pair of rotational bands. The measurements are in good agreement with results of a new combination of TAC and RPA calculations. The chiral character of the bands is affirmed and it is shown that their behavior is associated with a transition from a vibrational into a static chiral regime.Comment: Accepted for publication in the Physical Review Letters. Small modifications to fit the length limits of the journal. 10 pages, 4 figure
    • …
    corecore