3 research outputs found

    Feasibility of generalised diffusion kurtosis imaging approach for brain glioma grading

    No full text
    Purpose An accurate differentiation of brain glioma grade constitutes an important clinical issue. Powerful non-invasive approach based on diffusion MRI has already demonstrated its feasibility in glioma grade stratification. However, the conventional diffusion tensor (DTI) and kurtosis imaging (DKI) demonstrated moderate sensitivity and performance in glioma grading. In the present work, we apply generalised DKI (gDKI) approach in order to assess its diagnostic accuracy and potential application in glioma grading. Methods Diffusion scalar metrics were obtained from 50 patients with different glioma grades confirmed by histological tests following biopsy or surgery. All patients were divided into two groups with low- and high-grade gliomas as grade II versus grades III and IV, respectively. For a comparison, trained radiologists segmented the brain tissue into three regions with solid tumour, oedema, and normal appearing white matter. For each region, we estimated the conventional and gDKI metrics including DTI maps. Results We found high correlations between DKI and gDKI metrics in high-grade glioma. Further, gDKI metrics enabled introduction of a complementary measure for glioma differentiation based on correlations between the conventional and generalised approaches. Both conventional and generalised DKI metrics showed quantitative maps of tumour heterogeneity and oedema behaviour. gDKI approach demonstrated largely similar sensitivity and specificity in low-high glioma differentiation as in the case of conventional DKI method. Conclusion The generalised diffusion kurtosis imaging enables differentiation of low- and high-grade gliomas at the same level as the conventional DKI. Additionally, gDKI exhibited higher sensitivity to tumour heterogeneity and tissue contrast between tumour and healthy tissue and, thus, may contribute as a complementary source of information on tumour differentiation

    Feasibility of generalised diffusion kurtosis imaging approach for brain glioma grading

    No full text
    Purpose An accurate differentiation of brain glioma grade constitutes an important clinical issue. Powerful non-invasive approach based on diffusion MRI has already demonstrated its feasibility in glioma grade stratification. However, the conventional diffusion tensor (DTI) and kurtosis imaging (DKI) demonstrated moderate sensitivity and performance in glioma grading. In the present work, we apply generalised DKI (gDKI) approach in order to assess its diagnostic accuracy and potential application in glioma grading. Methods Diffusion scalar metrics were obtained from 50 patients with different glioma grades confirmed by histological tests following biopsy or surgery. All patients were divided into two groups with low- and high-grade gliomas as grade II versus grades III and IV, respectively. For a comparison, trained radiologists segmented the brain tissue into three regions with solid tumour, oedema, and normal appearing white matter. For each region, we estimated the conventional and gDKI metrics including DTI maps. Results We found high correlations between DKI and gDKI metrics in high-grade glioma. Further, gDKI metrics enabled introduction of a complementary measure for glioma differentiation based on correlations between the conventional and generalised approaches. Both conventional and generalised DKI metrics showed quantitative maps of tumour heterogeneity and oedema behaviour. gDKI approach demonstrated largely similar sensitivity and specificity in low-high glioma differentiation as in the case of conventional DKI method. Conclusion The generalised diffusion kurtosis imaging enables differentiation of low- and high-grade gliomas at the same level as the conventional DKI. Additionally, gDKI exhibited higher sensitivity to tumour heterogeneity and tissue contrast between tumour and healthy tissue and, thus, may contribute as a complementary source of information on tumour differentiation

    ΠœΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансная трактография Π½Π° основС вСроятностных Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² разлоТСния ΠΏΠΎ сфСричСским функциям Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π³Π»ΠΈΠΎΠΌΠ°ΠΌΠΈ Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ

    No full text
    Background: The use of magnetic resonance (MR) tractography in neurosurgery is becoming an increasingly common practice for noninvasive imaging of white matter pathways. The most common method of tract reconstruction is the deterministic algorithm of diffusion tensor magnetic resonance imaging (MRI). However, this method of reconstructing pathways has aΒ  number of significant limitations. The most important of them are the lack of the possibility of visualizing the intersecting fibers, the complexity of building tracts in the area of perifocal edema and in the immediate vicinity of the tumor borders. The method of MR tractography, based on obtaining aΒ  diffusion image with aΒ  high angular resolution (High Angular Resolution Diffusion Imaging, HARDI), using the constrained spherical deconvolution (CSD) algorithm for post-processing of data, makes it possible to avoid these disadvantages. Relatively recently, aΒ new algorithm, Single-Shell 3-Tissue CSD (SS3TCSD), has been proposed for processing HARDI data, which has the potential to improve the reconstructing of pathways in the area of perifocal edema or edema-infiltration.Aim: To evaluate the potential of the new SS3TCSD algorithm compared to ST-CSD (Single-Tissue CSD) in the imaging of the optic radiation and visual tracts in patients with gliomas.Materials and methods: Diffusion and routine brain MRI was performed in 10 patients with newly diagnosed cerebral gliomas, followed by reconstruction of the optic radiation and visual tracts. We compared new algorithms for postprocessing MR tractography (ST-CSD and SS3TCSD) in imaging of the optic tract and visual radiation in patients with brain gliomas affecting various parts of the visual system.Results: The SS3T-CSD method showed aΒ  lower mean percentage of false positive tracts compared to the ST-CSD method: 19.75% for the SS3T-CSD method and 80.32% for the ST-CSD method in cases of proximity of the tumor to the tracts, 5.27% for the SS3T-CSD method and 25.27% for the STCSD method in cases of reconstructing tracts in healthy white matter.Conclusion: The SS3T-CSD method has aΒ number of advantages over ST-CSD and allows for successful imaging of the optic pathways that have aΒ complex structure and repeatedly change direction along their course.ОбоснованиС. ИспользованиС ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной (МР)-Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Π²Β  Π½Π΅ΠΉΡ€ΠΎΡ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈ становится всС Π±ΠΎΠ»Π΅Π΅ частой ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΎΠΉ благодаря возмоТности Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ проводящиС ΠΏΡƒΡ‚ΠΈ Π±Π΅Π»ΠΎΠ³ΠΎ вСщСства. Π‘Π°ΠΌΡ‹ΠΉ распространСнный ΠΌΠ΅Ρ‚ΠΎΠ΄ рСконструкции Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ²Β  – дСтСрминистичСский Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎ-Ρ‚Π΅Π½Π·ΠΎΡ€Π½ΠΎΠΉ МР-Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ. Однако этот ΠΌΠ΅Ρ‚ΠΎΠ΄ построСния проводящих ΠΏΡƒΡ‚Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ†Π΅Π»Ρ‹ΠΉ ряд сущСствСнных ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ. К  Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹ΠΌ ΠΈΠ· Π½ΠΈΡ… относятся отсутствиС возмоТности Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΌΠ΅ΠΆΠ΄Ρƒ собой Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ построСния Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ² Π²Β  области ΠΏΠ΅Ρ€ΠΈΡ„ΠΎΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π΅ΠΊΠ° ΠΈΒ  Π² нСпосрСдствСнной близости ΠΊΒ  Π³Ρ€Π°Π½ΠΈΡ†Π°ΠΌ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ. Π­Ρ‚ΠΈΡ… нСдостатков ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ МР-Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, основанный Π½Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠΈ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ изобраТСния с  высоким ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ (Π°Π½Π³Π». high angulation reconstruction diffusion imaging, HARDI) с  использованиСм Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° разлоТСния ΠΏΠΎ сфСричСским функциям (Π°Π½Π³Π». constrained spherical deconvolution, CSD) для постобработки Π΄Π°Π½Π½Ρ‹Ρ…. ΠžΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π΅Π΄Π°Π²Π½ΠΎ Π±Ρ‹Π» ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… HARDI: Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ МР-сигнала Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ² Ρ‚ΠΊΠ°Π½ΠΈ ΠΌΠΎΠ·Π³Π° ΠΏΠΎ сфСричСским функциям с  использованиСм ΠΎΠ΄Π½ΠΎΠ³ΠΎ b-Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°Β  – SS3T-CSD (single-shell 3-tissue CSD). ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΎΠ½ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ построСниС проводящих ΠΏΡƒΡ‚Π΅ΠΉ Π²Β  области ΠΏΠ΅Ρ€ΠΈΡ„ΠΎΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π΅ΠΊΠ° ΠΈΠ»ΠΈ ΠΎΡ‚Π΅ΠΊΠ°-ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ.ЦСль  – ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ возмоТности Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° SS3T-CSD ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с  ST-CSD (single-tissue CSD – Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ МР-сигнала ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Ρ‚ΠΊΠ°Π½ΠΈ ΠΌΠΎΠ·Π³Π° ΠΏΠΎ сфСричСским функциям) ΠΏΡ€ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΈ ΠΈΒ  Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ² ΡƒΒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с глиомами.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈΒ  ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ДСсяти ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌ с  Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ выявлСнными Π³Π»ΠΈΠΎΠΌΠ°ΠΌΠΈ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° выполняли Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΡƒΡŽ ΠΈΒ  Ρ€ΡƒΡ‚ΠΈΠ½Π½ΡƒΡŽ МР-Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΡŽ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° с  ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ рСконструкциСй Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ лучистости ΠΈΒ Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ². ΠœΡ‹ сравнили Π½ΠΎΠ²Ρ‹Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ постобработки МР-Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ STCSD ΠΈΒ SS3T-CSD ΠΏΡ€ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ² ΠΈΒ Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ лучистости ΡƒΒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с  Π³Π»ΠΈΠΎΠΌΠ°ΠΌΠΈ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, ΠΏΠΎΡ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠΌΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΡ‚Π΄Π΅Π»Ρ‹ Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄ SS3T-CSD ΠΏΠΎΠΊΠ°Π·Π°Π» мСньший срСдний ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ Π»ΠΎΠΆΠ½ΠΎΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ² ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с мСтодом ST-CSD: 19,75 ΠΏΡ€ΠΎΡ‚ΠΈΠ²Β 80,32% в случаях Π±Π»ΠΈΠ·ΠΊΠΎΠ³ΠΎ располоТСния ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ ΠΊΒ  Ρ‚Ρ€Π°ΠΊΡ‚Π°ΠΌ ΠΈΒ  5,27 ΠΏΡ€ΠΎΡ‚ΠΈΠ²Β  25,27% Π²Β  случаях построСния Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ² Π²Β  Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ Π±Π΅Π»ΠΎΠΌ вСщСствС.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠœΠ΅Ρ‚ΠΎΠ΄ SS3T-CSD ΠΈΠΌΠ΅Π΅Ρ‚ ряд прСимущСств ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ST-CSD и позволяСт ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ проводящиС ΠΏΡƒΡ‚ΠΈ, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ структуру ΠΈΒ  Π½Π΅ΠΎΠ΄Π½ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎ ΠΌΠ΅Π½ΡΡŽΡ‰ΠΈΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎ своСму Ρ…ΠΎΠ΄Ρƒ
    corecore