4 research outputs found

    GRAS-Di system facilitates high-density genetic map construction and QTL identification in recombinant inbred lines of the wheat progenitor Aegilops tauschii

    Get PDF
    Due to large and complex genomes of Triticeae species, skim sequencing approaches have cost and analytical advantages for detecting genetic markers and building linkage maps. Here, we develop a high-density linkage map and identify quantitative trait loci (QTLs) for recombinant inbred lines of Aegilops tauschii, a D-genome donor of bread wheat, using the recently developed genotyping by Random Amplicon Sequencing-Direct (GRAS-Di) system, which facilitates skimming of the large and complicated genome and generates a large number of genetic markers. The deduced linkage groups based on the GRAS-Di genetic markers corresponded to the chromosome number of Ae. tauschii. We successfully identified stable QTLs for flowering time and spikelet shape-related traits. Genotype differences of RILs at the QTL-linked markers were significantly associated with the trait variations. In particular, one of the QTL-linked markers for flowering time was mapped close to VRN3 (also known as FLOWERING LOCUS T), which controls flowering. The GRAS-Di system is, therefore, an efficient and useful application for genotyping and linkage mapping in species with large and complex genomes, such as Triticeae species

    Introgression of chromosomal segments conferring early heading date from wheat diploid progenitor, Aegilops tauschii Coss., into Japanese elite wheat cultivars

    Get PDF
    The breeding of agriculturally useful genes from wild crop relatives must take into account recent and future climate change. In Japan, the development of early heading wheat cultivars without the use of any major gene controlling the heading date is desired to avoid overlap of the harvesting time before the rainy season. Here, we backcrossed two early heading lines of a synthetic hexaploid wheat, derived from a crossing between durum wheat and the wild wheat progenitor Aegilops tauschii, with four Japanese elite cultivars to develop early heading lines of bread wheat. In total, nine early heading lines that showed a heading date two to eight days earlier than their parental cultivars in field conditions were selected and established from the selfed progenies of the two- or three-times backcrossed populations. The whole appearance and spike shape of the selected early heading lines looked like their parental wheat cultivars. The mature grains of the selected lines had the parental cultivars' characteristics, although the grains exhibited longer and narrower shapes. RNA sequencing-based genotyping was performed to detect single nucleotide polymorphisms between the selected lines and their parental wheat cultivars, which revealed the chromosomal regions transmitted from the parental synthetic wheat to the selected lines. The introgression regions could shorten wheat heading date, and their chromosomal positions were dependent on the backcrossed wheat cultivars. Therefore, early heading synthetic hexaploid wheat is useful for fine-tuning of the heading date through introgression of Ae. tauschii chromosomal regions
    corecore