27 research outputs found

    Bioinertization of NanoLC/MS/MS Systems by Depleting Metal Ions From the Mobile Phases for Phosphoproteomics

    Get PDF
    We have successfully developed a bioinertized nanoflow liquid chromatography/tandem mass spectrometry (nanoLC/MS/MS) system for the highly sensitive analysis of phosphopeptides by depleting metal ions from the mobile phase. We found that not only direct contact of phosphopeptides with metal components, but also indirect contact with nanoLC pumps through the mobile phase causes significant losses during the recovery of phosphopeptides. Moreover, electrospray ionization was adversely affected by the mobile phase containing multiple metal ions as well as by the sample solvents contaminated with metal ions used in immobilized metal ion affinity chromatography for phosphopeptide enrichment. To solve these problems, metal ions were depleted by inserting an on-line metal ion removal device containing metal-chelating membranes between the gradient mixer and the autosampler. As a result, the peak areas of the identified phosphopeptides increased an average of 9.9-fold overall and 77-fold for multiply phosphorylated peptides with the insertion of the on-line metal ion removal system. This strategy would be applicable to highly sensitive analysis of other phosphorylated biomolecules by microscale-LC/MS/MS

    Serum amyloid A-induced IL-6 production by rheumatoid synoviocytes

    Get PDF
    AbstractIn this study, we investigated the role of serum amyloid A protein (SAA) in the production of interleukin-6 (IL-6) using rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). Recombinant SAA stimulation induced the production of pro-inflammatory cytokine, IL-6, from RA-FLS. The signaling events induced by SAA included the activation of the mitogen-activated protein kineases, p38 and JNK1/2 and the activation of nuclear factor-kappa B (NF-κB). Inhibitor studies have shown SAA-induced IL-6 production to be down-regulated by NF-κB inhibition and partially inhibited by p38 or JNK inhibitors. Our findings demonstrate that SAA is a significant inducer of IL-6, which is critically involved in RA pathogenesis

    Histological Remission during Corticosteroid Therapy of Overlapping Nonalcoholic Steatohepatitis and Autoimmune Hepatitis: Case Report and Literature Review

    Get PDF
    Concurrence of nonalcoholic steatohepatitis (NASH) with autoimmune hepatitis (AIH) is a rare condition that is challenging to diagnosis, due to the relatively high prevalence of autoantibodies in NASH. It is also difficult to determine the most effective treatment as corticosteroids are likely to worsen NASH despite being effective in the treatment of AIH. In this case report, we present a female diagnosed with NASH-AIH overlap with accompanying diabetes mellitus, who successfully achieved normalization of serum alanine aminotransferase levels following prednisolone therapy and weight loss. A follow-up liver biopsy performed 40 months after the initial diagnosis showed only minimal inflammatory infiltrates in the portal area without any NASH histology. Resolution of NASH, in conjunction with a reduction in hepatic fibrosis, might suggest that prednisolone itself does not aggravate steatohepatitis, but rather prevents disease progression. Appropriate immunosuppressive treatment may therefore be an important component of the optimum therapy for NASH-AIH overlap

    Serum amyloid A triggers the mosodium urate -mediated mature interleukin-1β production from human synovial fibroblasts

    Get PDF
    Background: Monosodium urate (MSU) has been shown to promote inflammasome activation and interleukin-1β (IL-1β) secretion in monocyte/macrophages, but the cellular pathway and nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in synovial tissues, remain elusive. In this study, we investigated the effects of MSU on synovial fibroblasts to elucidate the process of MSU-mediated synovial inflammation.Methods: Human synovial fibroblasts were stimulated with MSU in the presence or absence of serum amyloid A (SAA). The cellular supernatants were analyzed by immunoblotting using anti-IL-1β or anti-caspase-1 antibodies. IL-1β or NLRP3 mRNA expressions were analyzed by real-time PCR or reverse transcription-PCR (RT-PCR) method.Results: Neither SAA nor MSU stimulation resulted in IL-1β or interleukin-1α (IL-1α) secretions and pro-IL-1β processing in synovial fibroblasts. However, in SAA-primed synovial fibroblasts, MSU stimulation resulted in the activation of caspase-1 and production of active IL-1β and IL-1α. The effect of SAA on IL-1β induction was impaired in cells by silencing NLRP3 using siRNA or treating with caspase-1 inhibitor. In addition, SAA induced the secretion of cathepsin B and NLRP3 mRNA expression in synovial fibroblasts.Conclusions: Our data demonstrate that exposure of human synovial fibroblasts to SAA promotes MSU-mediated caspase-1 activation and IL-1β secretion in the absence of microbial stimulation. These findings provide insight into the molecular processes underlying the synovial inflammatory condition of gout

    Understanding Consumers' Preferences for a City Center Retail Environment in Urban Fringe Areas

    No full text

    Transplantation of High Hydrogen-Producing Microbiota Leads to Generation of Large Amounts of Colonic Hydrogen in Recipient Rats Fed High Amylose Maize Starch

    No full text
    The hydrogen molecule (H2), which has low redox potential, is produced by colonic fermentation. We examined whether increased hydrogen (H2) concentration in the portal vein in rats fed high amylose maize starch (HAS) helped alleviate oxidative stress, and whether the transplantation of rat colonic microbiota with high H2 production can shift low H2-generating rats (LG) to high H2-generating rats (HG). Rats were fed a 20% HAS diet for 10 days and 13 days in experiments 1 and 2, respectively. After 10 days (experiment 1), rats underwent a hepatic ischemia–reperfusion (IR) operation. Rats were then categorized into quintiles of portal H2 concentration. Plasma alanine aminotransferase activity and hepatic oxidized glutathione concentration were significantly lower as portal H2 concentration increased. In experiment 2, microbiota derived from HG (the transplantation group) or saline (the control group) were orally inoculated into LG on days 3 and 4. On day 13, portal H2 concentration in the transplantation group was significantly higher compared with the control group, and positively correlated with genera Bifidobacterium, Allobaculum, and Parabacteroides, and negatively correlated with genera Bacteroides, Ruminococcus, and Escherichia. In conclusion, the transplantation of microbiota derived from HG leads to stable, high H2 production in LG, with the resultant high production of H2 contributing to the alleviation of oxidative stress
    corecore