4,658 research outputs found
Variations in -Mode Parameters with Changing Onset-Time of a Large Flare
It is expected that energetic solar flares releasing large amount of energy
at the photosphere may be able to excite the acoustic (-) modes of
oscillations. We have determined the characteristic properties of mode
parameters by applying the ring diagram technique to 3-D power spectra obtained
for solar active region NOAA 10486 during the long duration energetic X17.2/4B
flare of October 28, 2003. Strong evidence of substantial increase in mode
amplitude and systematic variations in sub-surface flows, i.e., meridional and
zonal components of velocity, kinetic helicity, vorticity, is found from
comparison of the pre- to the post-flare phases.Comment: 14 pages, 4 figure
Subsurface Flows in and Around Active Regions with Rotating and Non-rotating Sunspots
The temporal variation of the horizontal velocity in subsurface layers
beneath three different types of active regions is studied using the technique
of ring diagrams. In this study, we select active regions (ARs) 10923, 10930,
10935 from three consecutive Carrington rotations: AR 10930 contains a
fast-rotating sunspot in a strong emerging active region while other two have
non-rotating sunspots with emerging flux in AR 10923 and decaying flux in AR
10935. The depth range covered is from the surface to about 12 Mm. In order to
minimize the influence of systematic effects, the selection of active and quiet
regions is made so that these were observed at the same heliographic locations
on the solar disk. We find a significant variation in both components of the
horizontal velocity in active regions as compared to quiet regions. The
magnitude is higher in emerging-flux regions than in the decaying-flux region,
in agreement with earlier findings. Further, we clearly see a significant
temporal variation in depth profiles of both zonal and meridional flow
components in AR 10930, with the variation in the zonal component being more
pronounced. We also notice a significant influence of the plasma motion in
areas closest to the rotating sunspot in AR 10930 while areas surrounding the
non-rotating sunspots in all three cases are least affected by the presence of
the active region in their neighborhood.Comment: Solar Physics (in press), includes 11 figure
Solar-cycle variation of the sound-speed asphericity from GONG and MDI data 1995-2000
We study the variation of the frequency splitting coefficients describing the
solar asphericity in both GONG and MDI data, and use these data to investigate
temporal sound-speed variations as a function of both depth and latitude during
the period from 1995-2000 and a little beyond. The temporal variations in even
splitting coefficients are found to be correlated to the corresponding
component of magnetic flux at the solar surface. We confirm that the
sound-speed variations associated with the surface magnetic field are
superficial. Temporally averaged results show a significant excess in sound
speed around 0.92 solar radii and latitude of 60 degrees.Comment: To be published in MNRAS, accepted July 200
Parametrizing the time-variation of the "surface term" of stellar p-mode frequencies: application to helioseismic data
The solar-cyle variation of acoustic mode frequencies has a frequency
dependence related to the inverse mode inertia. The discrepancy between model
predictions and measured oscillation frequencies for solar and solar-type
stellar acoustic modes includes a significant frequency-dependent term known as
the surface term that is also related to the inverse mode inertia. We
parametrize both the surface term and the frequency variations for low-degree
solar data from Birmingham Solar-Oscillations Network (BiSON) and medium-degree
data from the Global Oscillations Network Group (GONG) using the mode inertia
together with cubic and inverse frequency terms. We find that for the central
frequency of rotationally split multiplets the cubic term dominates both the
average surface term and the temporal variation, but for the medium-degree case
the inverse term improves the fit to the temporal variation. We also examine
the variation of the even-order splitting coefficients for the medium-degree
data and find that, as for the central frequency, the latitude-dependent
frequency variation, which reflects the changing latitudinal distribution of
magnetic activity over the solar cycle, can be described by the combination of
a cubic and an inverse function of frequency scaled by inverse mode inertia.
The results suggest that this simple parametrization could be used to assess
the activity-related frequency variation in solar-like asteroseismic targets.Comment: 13 pages, 11 figures. Accepted by MNRAS 13 October 201
Incorporating bazedoxifene/conjugated estrogens into the current paradigm of menopausal therapy
Many women experience bothersome vasomotor and vaginal symptoms during the menopausal transition. Decreasing levels of estrogens during menopause are also associated with reduced bone density and an increased risk of osteoporosis. Combined estrogen/progestin therapy (hormone therapy) effectively treats menopausal symptoms and prevents bone loss, but has been associated with some safety and tolerability concerns. A novel menopausal therapy is the tissue selective estrogen complex, which pairs a selective estrogen receptor modulator with one or more estrogens. In preclinical studies, the tissue selective estrogen complex partnering bazedoxifene (BZA) with conjugated estrogens (CE) antagonized stimulation of breast and endometrial tissue, reduced vasomotor instability, and preserved bone mass in rat and mouse models. The specific attributes seen with BZA/CE were different from those observed with other selective estrogen receptor modulator/estrogen pairings. BZA/CE has undergone clinical evaluation in the Phase III Selective estrogens, Menopause, And Response to Therapy (SMART) trials in postmenopausal women with an intact uterus. Of the various doses of BZA/CE evaluated, BZA 20 mg/CE 0.45 mg and 0.625 mg were associated with a low incidence of endometrial hyperplasia (<1%) similar to placebo, and showed significant improvements in hot flushes and vulvar/vaginal symptoms and increases in bone mineral density. BZA 20 mg/CE 0.45 mg and 0.625 mg were associated with a low incidence of breast-related adverse events and demonstrated no difference from placebo in age-related changes in mammographic breast density. Both BZA/ CE doses showed a favorable tolerability profile, with no increases in uterine bleeding or breast tenderness, and had positive effects on metabolic parameters and quality of life. BZA/CE may be a promising alternative to hormone therapy for the treatment of menopausal symptoms and prevention of osteoporosis in nonhysterectomized postmenopausal women
The Sun in transition? Persistence of near-surface structural changes through Cycle 24
We examine the frequency shifts in low-degree helioseismic modes from the
Birmingham Solar-Oscillations Network (BiSON) covering the period from 1985 -
2016, and compare them with a number of global activity proxies well as a
latitudinally-resolved magnetic index. As well as looking at frequency shifts
in different frequency bands, we look at a parametrization of the shift as a
cubic function of frequency. While the shifts in the medium- and highfrequency
bands are very well correlated with all of the activity indices (with the best
correlation being with the 10.7 cm radio flux), we confirm earlier findings
that there appears to have been a change in the frequency response to activity
during solar cycle 23, and the low frequency shifts are less correlated with
activity in the last two cycles than they were in Cycle 22. At the same time,
the more recent cycles show a slight increase in their sensitivity to activity
levels at medium and higher frequencies, perhaps because a greater proportion
of activity is composed of weaker or more ephemeral regions. This lends weight
to the speculation that a fundamental change in the nature of the solar dynamo
may be in progress.Comment: 9 pages, 6 figures. Accepted by MNRAS 24 May 201
Observation and Modeling of the Solar-Cycle Variation of the Meridional Flow
We present independent observations of the solar-cycle variation of flows
near the solar surface and at a depth of about 60 Mm, in the latitude range
. We show that the time-varying components of the meridional flow
at these two depths have opposite sign, while the time-varying components of
the zonal flow are in phase. This is in agreement with previous results. We
then investigate whether the observations are consistent with a theoretical
model of solar-cycle dependent meridional circulation based on a flux-transport
dynamo combined with a geostrophic flow caused by increased radiative loss in
the active region belt (the only existing quantitative model). We find that the
model and the data are in qualitative agreement, although the amplitude of the
solar-cycle variation of the meridional flow at 60 Mm is underestimated by the
model.Comment: To be published in Solar Physcis Topical Issue "Helioseismology,
Asteroseismology, and MHD Connections
Expanding the Entamoeba Universe: New Hosts Yield Novel Ribosomal Lineages.
Removing the requirement for cell culture has led to a substantial increase in the number of lineages of Entamoeba recognized as distinct. Surveying the range of potential host species for this parasite genus has barely been started and it is clear that additional sampling of the same host in different locations often identifies additional diversity. In this study, using small subunit ribosomal RNA gene sequencing, we identify four new lineages of Entamoeba, including the first report of Entamoeba from an elephant, and extend the host range of some previously described lineages. In addition, examination of microbiome data from a number of host animals suggests that substantial Entamoeba diversity remains to be uncovered
- …