39 research outputs found

    Pulsatility of insulin release – a clinically important phenomenon

    Get PDF
    The mechanisms and clinical importance of pulsatile insulin release are presented against the background of more than half a century of companionship with the islets of Langerhans. The insulin-secreting ÎČ-cells are oscillators with intrinsic variations of cytoplasmic ATP and Ca2+. Within the islets the ÎČ-cells are mutually entrained into a common rhythm by gap junctions and diffusible factors (ATP). Synchronization of the different islets in the pancreas is supposed to be due to adjustment of the oscillations to the same phase by neural output of acetylcholine and ATP. Studies of hormone secretion from the perfused pancreas of rats and mice revealed that glucose induces pulses of glucagon anti-synchronous with pulses of insulin and somatostatin. The anti-synchrony may result from a paracrine action of somatostatin on the glucagon-producing α-cells. Purinoceptors have a key function for pulsatile release of islet hormones. It was possible to remove the glucagon and somatostatin pulses with maintenance of those of insulin with an inhibitor of the P2Y1 receptors. Knock-out of the adenosine A1 receptor prolonged the pulses of glucagon and somatostatin without affecting the duration of the insulin pulses. Studies of isolated human islets indicate similar relations between pulses of insulin, glucagon, and somatostatin as found during perfusion of the rodent pancreas. The observation of reversed cycles of insulin and glucagon adds to the understanding how the islets regulate hepatic glucose production. Current protocols for pulsatile intravenous infusion therapy (PIVIT) should be modified to mimic the anti-synchrony between insulin and glucagon normally seen in the portal blood

    Pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure

    Get PDF
    OBJECTIVES: We investigated the effects of a novel ultrapotent poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor, PJ34, on cardiac and endothelial dysfunction in a rat model of chronic heart failure (CHF). BACKGROUND: Overactivation of the nuclear enzyme PARP importantly contributes to the development of cell dysfunction and tissue injury in various pathophysiologic conditions associated with oxidative stress, including myocardial reperfusion injury, heart transplantation, stroke, shock, and diabetes. METHODS: Chronic heart failure was induced in Wistar rats by chronic ligation of the left anterior descending coronary artery. Left ventricular (LV) function and ex vivo vascular contractility and relaxation were measured 10 weeks after the surgery. Nitrotyrosine (NT) formation and PARP activation were detected by immunohistochemistry. RESULTS: Chronic heart failure induced increased NT formation and PARP activation in the myocardium and intramural vasculature, depressed LV performance, and impaired vascular relaxation of aortic rings. PJ34 significantly decreased myocardial PARP activation but not NT formation, and improved both cardiac dysfunction and vascular relaxation. CONCLUSIONS: Poly(ADP-ribose) polymerase inhibition represents a novel approach for the experimental treatment of CHF

    Diabetes-induced overexpression of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly(ADP-ribose) polymerase activation

    No full text
    We hypothesize that poly (ADP‐ribosyl)ation, that is, poly (ADP‐ribose) polymerase (PARP)‐dependent transfer of ADP‐ribose moieties from NAD to nuclear proteins, plays a role in diabetic nephropathy. We evaluated whether PARP activation is present and whether two unrelated PARP inhibitors, 3‐aminobenzamide (ABA) and 1,5‐isoquinolinediol (ISO), counteract overexpression of endothelin‐1 (ET‐1) and ET receptors in the renal cortex in short‐term diabetes. The studies were performed in control rats and streptozotocin‐diabetic rats treated with/without ABA or ISO (30 and 3 mg*kg−1*day−1, intraperitoneally, for 2 weeks after 2 weeks of diabetes). Poly (ADP‐ribose) immunoreactivity was increased in tubuli, but not glomeruli, of diabetic rats and this increase was corrected by ISO, whereas ABA had a weaker effect. ET‐1 concentration (ELISA) was increased in diabetic rats, and this elevation was blunted by ISO. ET‐1, ET(A), and ET(B) mRNA (ribonuclease protection assay), but not ET‐3 mRNA (RT/PCR), abundance was increased in diabetic rats, and three variables were, at least, partially corrected by ISO. ABA produced a trend towards normalization of ET‐1 concentration and ET‐1, ET(A), and ET(B) mRNA abundance, but the differences with untreated diabetic group were not significant. Poly(ADP‐ribosyl)ation is involved in diabetes‐induced renal overexpression of ET‐1 and ET receptors. PARP inhibitors could provide a novel therapeutic approach for diabetic complications including nephropathy, and other diseases that involve the endothelin system.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154516/1/fsb2fj030013fje-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154516/2/fsb2fj030013fje.pd

    Effect of poly(ADP ribose) synthetase inhibition on burn and smoke inhalation injury in sheep

    No full text
    We investigated the role of the nuclear enzyme poly (ADP ribose) synthetase (PARS) in the pathogenesis of combined burn and smoke inhalation (burn/smoke) injury in an ovine model. Eighteen sheep were operatively prepared for chronic study. PARS inhibition was achieved by treatment with a novel and selective PARS inhibitor INO-1001. The PARS inhibitor attenuated 1) lung edema formation, 2) deterioration of gas exchange, 3) changes in airway blood flow, 4) changes in airway pressure, 5) lung histological injury, and 6) systemic vascular leakage. Lipid oxidation and plasma nitrite/nitrate (stable breakdown products of nitric oxide) levels were suppressed with the use of INO-1001. We conclude that PARS inhibition attenuates various aspects of the pathophysiological response in a clinically relevant experimental model of burn/smoke inhalation injury. </jats:p

    Angiotensin II-mediated endothelial dysfunction: role of poly(ADP-ribose) polymerase activation

    No full text
    Angiotensin II (AII) contributes to the pathogenesis of many cardiovascular disorders. Oxidant-mediated activation of poly(adenosine diphosphate–ribose) polymerase (PARP) plays a role in the development of endothelial dysfunction and the pathogenesis of various cardiovascular diseases. We have investigated whether activation of the nuclear enzyme PARP contributes to the development of AII-induced endothelial dysfunction. AII in cultured endothelial cells induced DNA single-strand breakage and dose-dependently activated PARP, which was inhibited by the AII subtype 1 receptor antagonist, losartan; the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, apocynin; and the nitric oxide synthase inhibitor, N-nitro-l-arginine methyl ester. Infusion of sub-pressor doses of AII to rats for 7 to 14 d induced the development of endothelial dysfunction ex vivo. The PARP inhibitors PJ34 or INO-1001 prevented the development of the endothelial dysfunction and restored normal endothelial function. Similarly, PARP-deficient mice infused with AII for 7 d were found resistant to the AII-induced development of endothelial dysfunction, as opposed to the wild-type controls. In spontaneously hypertensive rats there was marked PARP activation in the aorta, heart, and kidney. The endothelial dysfunction, the cardiovascular alterations and the activation of PARP were prevented by the angiotensin-converting enzyme inhibitor enalapril. We conclude that AII, via AII receptor subtype 1 activation and reactive oxygen and nitrogen species generation, triggers DNA breakage, which activates PARP in the vascular endothelium, leading to the development of endothelial dysfunction in hypertension
    corecore