455 research outputs found

    Comment on "The Phenomenology of a Nonstandard Higgs Boson in W_L W_L Scattering"

    Get PDF
    We show that in Composite Higgs models, the coupling of the Higgs resonance to a pair of WW bosons is weaker than the corresponding Standard Model coupling, provided the Higgs arises from electroweak doublets only. This is partly due to the effects of the nonlinear realization of the chiral symmetries at the compositeness scale.Comment: 6 pages, BU-HEP 94-2

    Antiresonances and Ultrafast Resonances in a Twin Photonic Oscillator

    Get PDF
    We consider the properties of the small-signal modulation response of symmetry-breaking phase-locked states of twin coupled semiconductor lasers. The extended stability and the varying asymmetry of these modes allows for the introduction of a rich set of interesting modulation response features, such as sharp resonances and anti-resonance as well as efficient modulation at very high frequencies exceeding the free running relaxation frequencies by orders of magnitude.Comment: 6 pages, 5 figure

    Exceptional Points in Two Dissimilar Coupled Diode Lasers

    Get PDF
    We show the abundance of Exceptional Points in the generic asymmetric configuration of two coupled diode lasers, under nonzero optical detuning and differential pumping. We pinpoint the location of these points with respect to the stability domains and the Hopf bifurcation points, in the solution space as well as in the space of experimentally controlled parameters.Comment: 5 pages, 4 figure

    Nonlinear Beam Propagation in a Class of Complex Non-PT -Symmetric Potentials

    Get PDF
    The subject of PT-symmetry and its areas of application have been blossoming over the past decade. Here, we consider a nonlinear Schr\"odinger model with a complex potential that can be tuned controllably away from being PT-symmetric, as it might be the case in realistic applications. We utilize two parameters: the first one breaks PT-symmetry but retains a proportionality between the imaginary and the derivative of the real part of the potential; the second one, detunes from this latter proportionality. It is shown that the departure of the potential from the PT -symmetric form does not allow for the numerical identification of exact stationary solutions. Nevertheless, it is of crucial importance to consider the dynamical evolution of initial beam profiles. In that light, we define a suitable notion of optimization and find that even for non PT-symmetric cases, the beam dynamics, both in 1D and 2D -although prone to weak growth or decay- suggests that the optimized profiles do not change significantly under propagation for specific parameter regimes

    Magnetic field imaging with atomic Rb vapor

    Full text link
    We demonstrate the possibility of dynamic imaging of magnetic fields using electromagnetically induced transparency in an atomic gas. As an experimental demonstration we employ an atomic Rb gas confined in a glass cell to image the transverse magnetic field created by a long straight wire. In this arrangement, which clearly reveals the essential effect, the field of view is about 2 x 2 mm^2 and the field detection uncertainty is 0.14 mG per 10 um x 10 um image pixel.Comment: 4 pages, 3 figure

    Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity

    Get PDF
    Magnetic fields generated by human and animal organs, such as the heart, brain and nervous system carry information useful for biological and medical purposes. These magnetic fields are most commonly detected using cryogenically-cooled superconducting magnetometers. Here we present the frst detection of action potentials from an animal nerve using an optical atomic magnetometer. Using an optimal design we are able to achieve the sensitivity dominated by the quantum shot noise of light and quantum projection noise of atomic spins. Such sensitivity allows us to measure the nerve impulse with a miniature room-temperature sensor which is a critical advantage for biomedical applications. Positioning the sensor at a distance of a few millimeters from the nerve, corresponding to the distance between the skin and nerves in biological studies, we detect the magnetic field generated by an action potential of a frog sciatic nerve. From the magnetic field measurements we determine the activity of the nerve and the temporal shape of the nerve impulse. This work opens new ways towards implementing optical magnetometers as practical devices for medical diagnostics.Comment: Main text with figures, and methods and supplementary informatio

    Antiresonances and Ultrafast Resonances in a Twin Photonic Oscillator

    Get PDF
    https://ieeexplore.ieee.org/document/8630807We consider the properties of the small-signal modulation response of symmetry-breaking phase-locked states of twin coupled semiconductor lasers. The extended stability and the varying asymmetry of these modes allows for the introduction of a rich set of interesting modulation response features, such as sharp resonances and antiresonances as well as efficient modulation at very high frequencies exceeding the free running relaxation frequencies by orders of magnitude

    Dynamical CP Violation and Flavour-Changing Processes

    Get PDF
    We investigate the phenomenological constraints on a model where, besides the standard model Higgs sector, there is an effective new strong interaction acting on the third generation of quarks and characterized by a θ\theta-like term. This θ\theta term induces electroweak symmetry breaking and leads to dynamical spontaneous CP violation. We show that the constraints coming from K physics and the electric dipole moment of the neutron impose that the new physics scale should be of the order of 35 TeV. Contrary to naive expectations, the predictions of the model for B physics are very close to the standard model ones. The main differences appear in processes involving the up quarks such as D0Dˉ0D^0-\bar{D}^0 mixing and in the electric dipole moment of the neutron, which should be close to the experimental limit. Possible deviations from the standard model predictions for CP asymmetries in B decays are also considered.Comment: LaTeX, 25 pages, 4 figure

    Top quark associated production of topcolor pions at hadron colliders

    Get PDF
    We investigate the associated production of a neutral physical pion with top quarks in the context of topcolor assisted technicolor. We find that single-top associated production does not yield viable rates at either the Tevatron or LHC. tt-associated production at the Tevatron is suppressed relative to Standard Model ttH, but at the LHC is strongly enhanced and would allow for easy observation of the main decay channels to bottom quarks, and possible observation of the decay to gluons.Comment: 13 pages, 4 figures, submitted to PR
    corecore