18 research outputs found

    Imprinting modulates processing of visual information in the visual wulst of chicks

    Get PDF
    BACKGROUND: Imprinting behavior is one form of learning and memory in precocial birds. With the aim of elucidating of the neural basis for visual imprinting, we focused on visual information processing. RESULTS: A lesion in the visual wulst, which is similar functionally to the mammalian visual cortex, caused anterograde amnesia in visual imprinting behavior. Since the color of an object was one of the important cues for imprinting, we investigated color information processing in the visual wulst. Intrinsic optical signals from the visual wulst were detected in the early posthatch period and the peak regions of responses to red, green, and blue were spatially organized from the caudal to the nasal regions in dark-reared chicks. This spatial representation of color recognition showed plastic changes, and the response pattern along the antero-posterior axis of the visual wulst altered according to the color the chick was imprinted to. CONCLUSION: These results indicate that the thalamofugal pathway is critical for learning the imprinting stimulus and that the visual wulst shows learning-related plasticity and may relay processed visual information to indicate the color of the imprint stimulus to the memory storage region, e.g., the intermediate medial mesopallium

    The Runx1 Transcription Factor Inhibits the Differentiation of Naive CD4+ T Cells into the Th2 Lineage by Repressing GATA3 Expression

    Get PDF
    Differentiation of naive CD4+ T cells into helper T (Th) cells is controlled by a combination of several transcriptional factors. In this study, we examined the functional role of the Runx1 transcription factor in Th cell differentiation. Naive T cells from transgenic mice expressing a dominant interfering form of Runx1 exhibited enhanced interleukin 4 production and efficient Th2 differentiation. In contrast, transduction of Runx1 into wild-type T cells caused a complete attenuation of Th2 differentiation and was accompanied by the cessation of GATA3 expression. Furthermore, endogenous expression of Runx1 in naive T cells declined after T cell receptor stimulation, at the same time that expression of GATA3 increased. We conclude that Runx1 plays a novel role as a negative regulator of GATA3 expression, thereby inhibiting the Th2 cell differentiation

    Cellular senescence in white matter microglia is induced during ageing in mice and exacerbates the neuroinflammatory phenotype

    Get PDF
    Cellular senescence, a state of irreversible cell-cycle arrest caused by a variety of cellular stresses, is critically involved in age-related tissue dysfunction in various organs. However, the features of cells in the central nervous system that undergo senescence and their role in neural impairment are not well understood as yet. Here, through comprehensive investigations utilising single-cell transcriptome analysis and various mouse models, we show that microglia, particularly in the white matter, undergo cellular senescence in the brain and spinal cord during ageing and in disease models involving demyelination. Microglial senescence is predominantly detected in disease-associated microglia, which appear in ageing and neurodegenerative diseases. We also find that commensal bacteria promote the accumulation of senescent microglia and disease-associated microglia during ageing. Furthermore, knockout of p16 INK4a, a key senescence inducer, ameliorates the neuroinflammatory phenotype in damaged spinal cords in mice. These results advance our understanding of the role of cellular senescence in the central nervous system and open up possibilities for the treatment of age-related neural disorders.Matsudaira T., Nakano S., Konishi Y., et al. Cellular senescence in white matter microglia is induced during ageing in mice and exacerbates the neuroinflammatory phenotype. Communications Biology 6, 665 (2023); https://doi.org/10.1038/s42003-023-05027-2

    Neuroinflammation in motor neuron disease

    No full text
    Increasing evidence suggests that the pathogenesis of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) is not restricted to the neurons but attributed to the abnormal interactions of neurons and surrounding glial and lymphoid cells. These findings led to the concept of non-cell autonomous neurodegeneration. Neuroinflammation, which is mediated by activated glial cells and infiltrated lymphocytes and accompanied by the subsequent production of proinflammatory cytokines and neurotoxic or neuroprotective molecules, is characteristic to the pathology in ALS and is a key component for non-cell autonomous neurodegeneration. This review covers the involvement of microglia and astrocytes in the ALS mouse models and human ALS, and it also covers the deregulated pathways in motor neurons, which are involved in initiating the disease. Based on the cell-type specific pathomechanisms of motor neuron disease, targeting of neuroinflammation could lead to future therapeutic strategies for ALS and could be potentially applied to other neurodegenerative diseases

    Neuroinflammation in Alzheimer’s disease: microglial signature and their relevance to disease

    No full text
    Abstract Alzheimer’s disease (AD) is the most common form of dementia, pathologically characterized by senile plaques and neurofibrillary tangles (NFTs), resulting in neurodegeneration. Neuroinflammation, defined as the activation of glial cells such as microglia and astrocytes, is observed surrounding senile plaques and affected neurons in AD. Recently conducted genome-wide association studies (GWAS) indicate that a large section of identified AD risk genes are involved in immune responses and are enriched in microglia. Microglia are innate immune cells in the central nervous system (CNS), which are involved in immune surveillance and maintenance of homeostasis in the CNS. Recently, a novel subpopulation of activated microglia named as disease-associated microglia (DAM), also known as activated response microglia (ARM) or microglial neurodegenerative phenotype (MGnD), was identified in AD model mice. These microglia closely associate with β-amyloid (Aβ) plaques and exhibit characteristic gene expression profiles accompanied with reduced expressions of homeostatic microglial genes. However, it remains unclear whether decreased homeostatic microglia functions or increased DAM/ARM/MGnD functions correlate with the degree of neuronal loss in AD. To translate the results of rodent studies to human AD, precuneus, the brain region vulnerable to β-amyloid accumulation in preclinical AD, is of high interest, as it can provide novel insights into the mechanisms of microglia response to Aβ in early AD. In this study, we performed comparative analyses of gene expression profiles of microglia among three representative neurodegenerative mouse models and the human precunei with early AD pathology. We proceeded to evaluate the identified genes as potential therapeutic targets for AD. We believe that our findings will provide important resources to better understand the role of glial dysfunction in AD

    Data_Sheet_1_Comprehensive expression analysis with cell-type-specific transcriptome in ALS-linked mutant SOD1 mice: Revisiting the active role of glial cells in disease.pdf

    No full text
    Non-cell autonomous mechanisms are involved in the pathogenesis of amyotrophic lateral sclerosis (ALS), an adult neurodegenerative disease characterized by selective motor neuron loss. While the emerging role of glial cells in ALS has been noted, the detailed cell-type-specific role of glial cells has not been clarified. Here, we examined mRNA expression changes using microarrays of the spinal cords of three distinct lines of mutant superoxide dismutase (SOD) 1 transgenic mice, an established ALS model. Our analysis used a transcriptome database of component cell types in the central nervous system (CNS), as well as SOD1G93A cell-type transcriptomes. More than half of the differentially expressed genes (DEGs) were highly expressed in microglia, and enrichment analysis of DEGs revealed that immunological reactions were profoundly involved and some transcription factors were upregulated. Our analysis focused on DEGs that are highly expressed in each cell type, as well as chemokines, caspases, and heat shock proteins. Disease-associated microglial genes were upregulated, while homeostatic microglial genes were not, and galectin-3 (Mac2), a known activated microglial marker, was predicted to be ectopically expressed in astrocytes in mutant SOD1 mice. In mutant SOD1 mice, we developed a prediction model for the pathophysiology of different cell types related to TREM2, apolipoprotein E, and lipoproteins. Our analysis offers a viable resource to understand not only the molecular pathologies of each CNS constituent cell type, but also the cellular crosstalk between different cell types under both physiological and pathological conditions in model mice for various neurodegenerative diseases.</p

    Table_9_Comprehensive expression analysis with cell-type-specific transcriptome in ALS-linked mutant SOD1 mice: Revisiting the active role of glial cells in disease.xlsx

    No full text
    Non-cell autonomous mechanisms are involved in the pathogenesis of amyotrophic lateral sclerosis (ALS), an adult neurodegenerative disease characterized by selective motor neuron loss. While the emerging role of glial cells in ALS has been noted, the detailed cell-type-specific role of glial cells has not been clarified. Here, we examined mRNA expression changes using microarrays of the spinal cords of three distinct lines of mutant superoxide dismutase (SOD) 1 transgenic mice, an established ALS model. Our analysis used a transcriptome database of component cell types in the central nervous system (CNS), as well as SOD1G93A cell-type transcriptomes. More than half of the differentially expressed genes (DEGs) were highly expressed in microglia, and enrichment analysis of DEGs revealed that immunological reactions were profoundly involved and some transcription factors were upregulated. Our analysis focused on DEGs that are highly expressed in each cell type, as well as chemokines, caspases, and heat shock proteins. Disease-associated microglial genes were upregulated, while homeostatic microglial genes were not, and galectin-3 (Mac2), a known activated microglial marker, was predicted to be ectopically expressed in astrocytes in mutant SOD1 mice. In mutant SOD1 mice, we developed a prediction model for the pathophysiology of different cell types related to TREM2, apolipoprotein E, and lipoproteins. Our analysis offers a viable resource to understand not only the molecular pathologies of each CNS constituent cell type, but also the cellular crosstalk between different cell types under both physiological and pathological conditions in model mice for various neurodegenerative diseases.</p

    Table_5_Comprehensive expression analysis with cell-type-specific transcriptome in ALS-linked mutant SOD1 mice: Revisiting the active role of glial cells in disease.xlsx

    No full text
    Non-cell autonomous mechanisms are involved in the pathogenesis of amyotrophic lateral sclerosis (ALS), an adult neurodegenerative disease characterized by selective motor neuron loss. While the emerging role of glial cells in ALS has been noted, the detailed cell-type-specific role of glial cells has not been clarified. Here, we examined mRNA expression changes using microarrays of the spinal cords of three distinct lines of mutant superoxide dismutase (SOD) 1 transgenic mice, an established ALS model. Our analysis used a transcriptome database of component cell types in the central nervous system (CNS), as well as SOD1G93A cell-type transcriptomes. More than half of the differentially expressed genes (DEGs) were highly expressed in microglia, and enrichment analysis of DEGs revealed that immunological reactions were profoundly involved and some transcription factors were upregulated. Our analysis focused on DEGs that are highly expressed in each cell type, as well as chemokines, caspases, and heat shock proteins. Disease-associated microglial genes were upregulated, while homeostatic microglial genes were not, and galectin-3 (Mac2), a known activated microglial marker, was predicted to be ectopically expressed in astrocytes in mutant SOD1 mice. In mutant SOD1 mice, we developed a prediction model for the pathophysiology of different cell types related to TREM2, apolipoprotein E, and lipoproteins. Our analysis offers a viable resource to understand not only the molecular pathologies of each CNS constituent cell type, but also the cellular crosstalk between different cell types under both physiological and pathological conditions in model mice for various neurodegenerative diseases.</p

    Comprehensive expression analysis with cell-type-specific transcriptome in ALS-linked mutant SOD1 mice: Revisiting the active role of glial cells in disease

    Get PDF
    Non-cell autonomous mechanisms are involved in the pathogenesis of amyotrophic lateral sclerosis (ALS), an adult neurodegenerative disease characterized by selective motor neuron loss. While the emerging role of glial cells in ALS has been noted, the detailed cell-type-specific role of glial cells has not been clarified. Here, we examined mRNA expression changes using microarrays of the spinal cords of three distinct lines of mutant superoxide dismutase (SOD) 1 transgenic mice, an established ALS model. Our analysis used a transcriptome database of component cell types in the central nervous system (CNS), as well as SOD1G93A cell-type transcriptomes. More than half of the differentially expressed genes (DEGs) were highly expressed in microglia, and enrichment analysis of DEGs revealed that immunological reactions were profoundly involved and some transcription factors were upregulated. Our analysis focused on DEGs that are highly expressed in each cell type, as well as chemokines, caspases, and heat shock proteins. Disease-associated microglial genes were upregulated, while homeostatic microglial genes were not, and galectin-3 (Mac2), a known activated microglial marker, was predicted to be ectopically expressed in astrocytes in mutant SOD1 mice. In mutant SOD1 mice, we developed a prediction model for the pathophysiology of different cell types related to TREM2, apolipoprotein E, and lipoproteins. Our analysis offers a viable resource to understand not only the molecular pathologies of each CNS constituent cell type, but also the cellular crosstalk between different cell types under both physiological and pathological conditions in model mice for various neurodegenerative diseases
    corecore