49 research outputs found

    Evidence for localization and 0.7 anomaly in hole quantum point contacts

    Full text link
    Quantum point contacts implemented in p-type GaAs/AlGaAs heterostructures are investigated by low-temperature electrical conductance spectroscopy measurements. Besides one-dimensional conductance quantization in units of 2e2/h2e^{2}/h a pronounced extra plateau is found at about 0.7(2e2/h)0.7(2e^{2}/h) which possesses the characteristic properties of the so-called "0.7 anomaly" known from experiments with n-type samples. The evolution of the 0.7 plateau in high perpendicular magnetic field reveals the existence of a quasi-localized state and supports the explanation of the 0.7 anomaly based on self-consistent charge localization. These observations are robust when lateral electrical fields are applied which shift the relative position of the electron wavefunction in the quantum point contact, testifying to the intrinsic nature of the underlying physics.Comment: 4.2 pages, 3 figure

    Origins of conductance anomalies in a p-type GaAs quantum point contact

    Get PDF
    Low temperature transport measurements on a p-GaAs quantum point contact are presented which reveal the presence of a conductance anomaly that is markedly different from the conventional `0.7 anomaly'. A lateral shift by asymmetric gating of the conducting channel is utilized to identify and separate different conductance anomalies of local and generic origins experimentally. While the more generic 0.7 anomaly is not directly affected by changing the gate configuration, a model is proposed which attributes the additional conductance features to a gate-dependent coupling of the propagating states to localized states emerging due to a nearby potential imperfection. Finite bias conductivity measurements reveal the interplay between the two anomalies consistently with a two-impurity Kondo model

    Observation of excited states in a p-type GaAs quantum dot

    Full text link
    A quantum dot fabricated by scanning probe oxidation lithography on a p-type, C-doped GaAs/AlGaAs heterostructure is investigated by low temperature electrical conductance measurements. Clear Coulomb blockade oscillations are observed and analyzed in terms of sequential tunneling through the single-particle levels of the dot at T_hole = 185 mK. The charging energies as large as 2 meV evaluated from Coulomb diamond measurements together with the well resolved single-hole excited state lines in the charge stability diagram indicate that the dot is operated with a small number of confined particles close to the ultimate single-hole regime.Comment: 5 pages, 5 figure

    B→Kl+l−B\to Kl^+l^- decay form factors from three-flavor lattice QCD

    Get PDF
    We compute the form factors for the B→Kl+l−B \to Kl^+l^- semileptonic decay process in lattice QCD using gauge-field ensembles with 2+1 flavors of sea quark, generated by the MILC Collaboration. The ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks, and the clover action with the Fermilab interpretation is used for the heavy bb quark. We present results for the form factors f+(q2)f_+(q^2), f0(q2)f_0(q^2), and fT(q2)f_T(q^2), where q2q^2 is the momentum transfer, together with a comprehensive examination of systematic errors. Lattice QCD determines the form factors for a limited range of q2q^2, and we use the model-independent zz expansion to cover the whole kinematically allowed range. We present our final form-factor results as coefficients of the zz expansion and the correlations between them, where the errors on the coefficients include statistical and all systematic uncertainties. We use this complete description of the form factors to test QCD predictions of the form factors at high and low q2q^2. We also compare a Standard-Model calculation of the branching ratio for B→Kl+l−B \to Kl^+l^- with experimental data.Comment: V2: Fig.7 added. Typos text corrected. Reference added. Version published in Phys. Rev.

    A Scaling Approach for Interacting Quantum Wires -a Possible Explanation for the 0.7 Anomalous Conductance

    Full text link
    We consider a weakly interacting finite wire with short and long range interactions. The long range interactions enhance the 4kF4k_{F} scattering and renormalize the wire to a strongly interacting limit. For large screening lengths, the renormalized charge stiffness Luttinger parameter Keff.K_{eff.} decreases to Keff.<1/2K_{eff.}< {1/2}, giving rise to a Wigner crystal at T=0 with an anomalous conductance at finite temperatures. For short screening lengths, the renormalized Luttinger parameter Keff.K_{eff.} is restricted to 1/2≤Keff.≤1{1/2}\leq K_{eff.}\leq 1. As a result, at temperatures larger than the magnetic exchange energy we find an interacting metal which for Keff.≈1/2K_{eff.}\approx {1/2} is equivalent to the Hubbard U→∞U\to\infty model, with the anomalous conductance G≈e2hG\approx\frac{e^2}{h} .Comment: 26 pages and 6 figure

    Extreme sensitivity of the spin-splitting and 0.7 anomaly to confining potential in one-dimensional nanoelectronic devices

    Full text link
    Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective components for spintronic applications and are of fundamental interest in the study of electron many-body effects such as the 0.7 x 2e^2/h anomaly. We report on the dependence of the 1D Lande g-factor g* and 0.7 anomaly on electron density and confinement in QPCs with two different top-gate architectures. We obtain g* values up to 2.8 for the lowest 1D subband, significantly exceeding previous in-plane g-factor values in AlGaAs/GaAs QPCs, and approaching that in InGaAs/InP QPCs. We show that g* is highly sensitive to confinement potential, particularly for the lowest 1D subband. This suggests careful management of the QPC's confinement potential may enable the high g* desirable for spintronic applications without resorting to narrow-gap materials such as InAs or InSb. The 0.7 anomaly and zero-bias peak are also highly sensitive to confining potential, explaining the conflicting density dependencies of the 0.7 anomaly in the literature.Comment: 23 pages, 7 figure
    corecore