63 research outputs found
Microplate-based platform for combined chromatin and DNA methylation immunoprecipitation assays
<p>Abstract</p> <p>Background</p> <p>The processes that compose expression of a given gene are far more complex than previously thought presenting unprecedented conceptual and mechanistic challenges that require development of new tools. Chromatin structure, which is regulated by DNA methylation and histone modification, is at the center of gene regulation. Immunoprecipitations of chromatin (ChIP) and methylated DNA (MeDIP) represent a major achievement in this area that allow researchers to probe chromatin modifications as well as specific protein-DNA interactions <it>in vivo </it>and to estimate the density of proteins at specific sites genome-wide. Although a critical component of chromatin structure, DNA methylation has often been studied independently of other chromatin events and transcription.</p> <p>Results</p> <p>To allow simultaneous measurements of DNA methylation with other genomic processes, we developed and validated a simple and easy-to-use high throughput microplate-based platform for analysis of DNA methylation. Compared to the traditional beads-based MeDIP the microplate MeDIP was more sensitive and had lower non-specific binding. We integrated the MeDIP method with a microplate ChIP assay which allows measurements of both DNA methylation and histone marks at the same time, Matrix ChIP-MeDIP platform. We illustrated several applications of this platform to relate DNA methylation, with chromatin and transcription events at selected genes in cultured cells, human cancer and in a model of diabetic kidney disease.</p> <p>Conclusion</p> <p>The high throughput capacity of Matrix ChIP-MeDIP to profile tens and potentially hundreds of different genomic events at the same time as DNA methylation represents a powerful platform to explore complex genomic mechanism at selected genes in cultured cells and in whole tissues. In this regard, Matrix ChIP-MeDIP should be useful to complement genome-wide studies where the rich chromatin and transcription database resources provide fruitful foundation to pursue mechanistic, functional and diagnostic information at genes of interest in health and disease.</p
The Increased Activity of Liver Lysosomal Lipase in Nonalcoholic Fatty Liver Disease Contributes to the Development of Hepatic Insulin Resistance
We tested the hypothesis that TAG accumulation in the liver induced by short-term high-fat diet (HFD) in rats leads to the dysregulation of endogenous TAG degradation by lysosomal lipase (LIPA) via lysosomal pathway and is causally linked with the onset of hepatic insulin resistance. We found that LIPA could be translocated between qualitatively different depots (light and dense lysosomes). In contrast to dense lysosomal fraction, LIPA associated with light lysosomes exhibits high activity on both intracellular TAG and exogenous substrate and prandial- or diet-dependent regulation. On standard diet, LIPA activity was upregulated in fasted and downregulated in fed animals. In the HFD group, we demonstrated an increased TAG content, elevated LIPA activity, enhanced production of diacylglycerol, and the abolishment of prandial-dependent LIPA regulation in light lysosomal fraction. The impairment of insulin signalling and increased activation of PKCΔ was found in liver of HFD-fed animals. Lipolysis of intracellular TAG, mediated by LIPA, is increased in steatosis probably due to the enhanced formation of phagolysosomes. Consequent overproduction of diacylglycerol may represent the causal link between HFD-induced hepatic TAG accumulation and hepatic insulin resistance via PKCΔ activation
- âŠ