4 research outputs found

    Comparison between optical and electrical data on hole concentration in zinc-doped p-GaAs

    Get PDF
    The optical and electrical properties of zinc-doped Cz p-GaAs have been studied. Reflection spectra of ten p-GaAs specimens have been taken in the mid-IR region. Van der Pau galvanomagnetic, electrical resistivity and Hall coefficient measurements have been carried out for the same specimens (all the measurements were carried out at room temperature). The reflection spectra have been processed using the Kramers–Kronig relations, spectral dependences of the real and imaginary parts of the complex dielectric permeability have been calculated and loss function curves have been plotted. The loss function maximum position has been used to calculate the characteristic wavenumber corresponding to the high-frequency plasmon-phonon mode frequency. Theoretical calculations have been conducted and a calibration curve has been built up for determining heavy hole concentration in p-GaAs at T = 295 K based on known characteristic wavenumber. Further matching of the optical and Hall data has been used for determining the light to heavy hole mobility ratio. This ratio proves to be in the 1.9–2.8 range which is far lower as compared with theoretical predictions in the assumption of the same scattering mechanism for light and heavy holes (at optical phonons). It has been hypothesized that the scattering mechanisms for light and heavy holes differ

    Methods of dislocation structure characterization in AIIIBV semiconductor single crystals

    No full text
    The development pace of advanced electronics raises the demand for semiconductor single crystals and strengthens the requirements to their structural perfection. Dislocation density and distribution pattern are most important parameters of semiconductor single crystals which determine their performance as integrated circuit components. Therefore studies of the mechanisms of dislocation nucleation, slip and distribution are among the most important tasks which make researchers face the choice of suitable analytical methods. This work is an overview of advanced methods of studying and evaluating dislocation density in single crystals. Brief insight has been given on the main advantages and drawbacks of the methods overviewed and experimental data have been presented. The selective etching method (optical light microscopy) has become the most widely used one and in its conventional setup is quite efficient in the identification of scrap defects and in dislocation density evaluation by number of etch pits per vision area. Since the introduction of digital light microscopy and the related transfer from image analysis to pixel intensity matrices and measurement automation, it has become possible to implement quantitative characterization for the entire cross-section of single crystal wafers and analyze structural imperfection distribution pattern. X-ray diffraction is conventionally used for determination of crystallographic orientation but it also allows evaluating dislocation density by rocking curve broadening in double-crystal setup. Secondary electron scanning electron microscopy and atomic force microscopy allow differentiating etch patterns by origin and studying their geometry in detail. Transmission electron microscopy and induced current method allow obtaining micrographs of discrete dislocations but require labor-consuming preparation of experimental specimens. X-ray topography allows measuring bulky samples and also has high resolution but is hardly suitable for industry-wide application due to the high power consumption of measurements. Digital image processing broadens the applicability range of basic dislocation structure analytical methods in materials science and increases the authenticity of experimental results

    Methods of dislocation structure characterization in AIIIBV semiconductor single crystals

    No full text
    The development pace of advanced electronics raises the demand for semiconductor single crystals and strengthens the requirements to their structural perfection. Dislocation density and distribution pattern are most important parameters of semiconductor single crystals which determine their performance as integrated circuit components. Therefore studies of the mechanisms of dislocation nucleation, slip and distribution are among the most important tasks which make researchers face the choice of suitable analytical methods. This work is an overview of advanced methods of studying and evaluating dislocation density in single crystals. Brief insight has been given on the main advantages and drawbacks of the methods overviewed and experimental data have been presented. The selective etching method (optical light microscopy) has become the most widely used one and in its conventional setup is quite efficient in the identification of scrap defects and in dislocation density evaluation by number of etch pits per vision area. Since the introduction of digital light microscopy and the related transfer from image analysis to pixel intensity matrices and measurement automation, it has become possible to implement quantitative characterization for the entire cross-section of single crystal wafers and analyze structural imperfection distribution pattern. X-ray diffraction is conventionally used for determination of crystallographic orientation but it also allows evaluating dislocation density by rocking curve broadening in double-crystal setup. Secondary electron scanning electron microscopy and atomic force microscopy allow differentiating etch patterns by origin and studying their geometry in detail. Transmission electron microscopy and induced current method allow obtaining micrographs of discrete dislocations but require labor-consuming preparation of experimental specimens. X-ray topography allows measuring bulky samples and also has high resolution but is hardly suitable for industry-wide application due to the high power consumption of measurements. Digital image processing broadens the applicability range of basic dislocation structure analytical methods in materials science and increases the authenticity of experimental results

    Comparison between optical and electrical data on hole concentration in zinc-doped p-GaAs

    No full text
    The optical and electrical properties of zinc-doped Cz p-GaAs have been studied. Reflection spectra of ten p-GaAs specimens have been taken in the mid-IR region. Van der Pau galvanomagnetic, electrical resistivity and Hall coefficient measurements have been carried out for the same specimens (all the measurements were carried out at room temperature). The reflection spectra have been processed using the Kramers–Kronig relations, spectral dependences of the real and imaginary parts of the complex dielectric permeability have been calculated and loss function curves have been plotted. The loss function maximum position has been used to calculate the characteristic wavenumber corresponding to the high-frequency plasmon-phonon mode frequency. Theoretical calculations have been conducted and a calibration curve has been built up for determining heavy hole concentration in p-GaAs at T = 295 K based on known characteristic wavenumber. Further matching of the optical and Hall data has been used for determining the light to heavy hole mobility ratio. This ratio proves to be in the 1.9–2.8 range which is far lower as compared with theoretical predictions in the assumption of the same scattering mechanism for light and heavy holes (at optical phonons). It has been hypothesized that the scattering mechanisms for light and heavy holes differ
    corecore