30 research outputs found

    Synthesis and in vitro anticancer evaluation of some 4,6-diamino-1,3,5-triazine-2-carbohydrazides as Rad6 ubiquitin conjugating enzyme inhibitors

    Get PDF
    Series of 4-amino-6-(arylamino)-1,3,5-triazine-2-carbohydrazides (3a-e) and N'-phenyl-4,6-bis(arylamino)-1,3,5-triazine-2-carbohydrazides (6a-e), for ease of readership, we will abbreviate our compound names as ā€œ new triazinesā€, have been synthesized, based on the previously reported Rad6B-inhibitory diamino-triazinylmethyl benzoate anticancer agents TZ9 and 4-amino-N'-phenyl-6-(arylamino)-1,3,5-triazine-2-carbohydrazides. Synthesis of the target compounds was readily accomplished in two steps from either bis-aryl/aryl biguanides via reaction of phenylhydrazine or hydrazinehydrate with key 4-amino-6-bis(arylamino)/(arylamino)-1,3,5-triazine-2-carboxylate intermediates. These new triazine derivatives were evaluated for their abilities to inhibit Rad6B ubiquitin conjugation and in vitro anticancer activity against several human cancer cell lines: ovarian (OV90 and A2780), lung (H1299and A549), breast (MCF-7 and MDA-MB231) and colon (HT29) cancer cells by MTS assays. All the 10 new triazines exhibited superior Rad6B inhibitory activities in comparison to selective Rad6 inhibitor TZ9 that was reported previously. Similarly, new triazines also showed better IC50 values in survival assays of various tumor cell lines. Particularly, new triazines 6a-c, exhibited lower IC50 (3.3 to 22M) values compared to TZ

    Single-molecule observations of topotecan-mediated TopIB activity at a unique DNA sequence

    Get PDF
    The rate of DNA supercoil removal by human topoisomerase IB (TopIB) is slowed down by the presence of the camptothecin class of antitumor drugs. By preventing religation, these drugs also prolong the lifetime of the covalent TopIBā€“DNA complex. Here, we use magnetic tweezers to measure the rate of supercoil removal by drug-bound TopIB at a single DNA sequence in real time. This is accomplished by covalently linking camptothecins to a triple helix-forming oligonucleotide that binds at one location on the DNA molecule monitored. Surprisingly, we find that the DNA dynamics with the TopIBā€“drug interaction restricted to a single DNA sequence are indistinguishable from the dynamics observed when the TopIBā€“drug interaction takes place at multiple sites. Specifically, the DNA sequence does not affect the instantaneous supercoil removal rate or the degree to which camptothecins increase the lifetime of the covalent complex. Our data suggest that sequence-dependent dynamics need not to be taken into account in efforts to develop novel camptothecins

    c-Jun N-terminal kinase-mediated Rad18 phosphorylation facilitates PolĀ  recruitment to stalled replication forks

    Get PDF
    The association of Rad18 with PolĪ· is crucial for efficient translesion synthesis and DNA damage tolerance. Rad18ā€“PolĪ· interactions and UV tolerance depend on JNK-dependent Rad18 phosphorylation. These results provide a new mechanism by which SAPK signaling promotes genome maintenance.The E3 ubiquitin ligase Rad18 chaperones DNA polymerase Ī· (PolĪ·) to sites of UV-induced DNA damage and monoubiquitinates proliferating cell nuclear antigen (PCNA), facilitating engagement of PolĪ· with stalled replication forks and promoting translesion synthesis (TLS). It is unclear how Rad18 activities are coordinated with other elements of the DNA damage response. We show here that Ser-409 residing in the PolĪ·-binding motif of Rad18 is phosphorylated in a checkpoint kinase 1ā€“dependent manner in genotoxin-treated cells. Recombinant Rad18 was phosphorylated specifically at S409 by c-Jun N-terminal kinase (JNK) in vitro. In UV-treated cells, Rad18 S409 phosphorylation was inhibited by a pharmacological JNK inhibitor. Conversely, ectopic expression of JNK and its upstream kinase mitogen-activated protein kinase kinase 4 led to DNA damageā€“independent Rad18 S409 phosphorylation. These results identify Rad18 as a novel JNK substrate. A Rad18 mutant harboring a Ser ā†’ Ala substitution at S409 was compromised for PolĪ· association and did not redistribute PolĪ· to nuclear foci or promote PolĪ·āˆ’PCNA interaction efficiently relative to wild-type Rad18. Rad18 S409A also failed to fully complement the UV sensitivity of Rad18-depleted cells. Taken together, these results show that Rad18 phosphorylation by JNK represents a novel mechanism for promoting TLS and DNA damage tolerance

    Mutations at the Subunit Interface of Yeast Proliferating Cell Nuclear Antigen Reveal a Versatile Regulatory Domain

    Get PDF
    Acknowledgments We thank Szilvia Minorits for technical assistance. I.U. conceived and designed the project and wrote the manuscript. All authors participated in designing and performing the experiments, and analyzing the results. The authors declare no competing financial interests. This work was also supported by a grant from the National Research, Development and Innovation Office GINOP-2.3.2-15-2016-00001. Funding: This work was supported by Hungarian Science Foundation Grant OTKA 109521 and National Research Development and Innovation Office GINOP-2.3.2-15-2016-00001. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    RAD6 promotes chemoresistance in ovarian cancer

    No full text
    Mortality in ovarian cancer is predominantly due to acquired chemoresistance and tumor recurrence. UBIQUITIN CONJUGATING ENZYME E2 or RAD6 expression increases in cell lines and patient tumors in response to platinum-based chemotherapy and promotes both activation of DNA damage response pathways and expression of stemness genes and a stem cell-like phenotype driving ovarian cancer chemoresistance

    Aberrant GLI1 Activation in DNA Damage Response, Carcinogenesis and Chemoresistance

    No full text
    The canonical hedgehog (HH) pathway is a multicomponent signaling cascade (HH, protein patched homolog 1 (PTCH1), smoothened (SMO)) that plays a pivotal role during embryonic development through activation of downstream effector molecules, namely glioma-associated oncogene homolog 1 (GLI1), GLI2 and GLI3. Activation of GLIs must be tightly regulated as they modulate target genes which control tissue patterning, stem cell maintenance, and differentiation during development. However, dysregulation or mutations in HH signaling leads to genomic instability (GI) and various cancers, for example, germline mutation in PTCH1 lead to Gorlin syndrome, a condition where patients develop numerous basal cell carcinomas and rarely rhabdomyosarcoma (RMS). Activating mutations in SMO have also been recognized in sporadic cases of medulloblastoma and SMO is overexpressed in many other cancers. Recently, studies in several human cancers have shown that GLI1 expression is independent from HH ligand and canonical intracellular signaling through PTCH and SMO. In fact, this aberrantly regulated GLI1 has been linked to several non-canonical oncogenic growth signals such as Kirsten rat sarcoma viral oncogene homolog (KRAS), avian myelocytomatosis virus oncogene cellular homolog (C-MYC), transforming growth factor Ī² (TGFĪ²), wingless-type MMTV integration site family (WNT) and Ī²-catenin. Recent studies from our lab and other independent studies demonstrate that aberrantly expressed GLI1 influences the integrity of several DNA damage response and repair signals, and if altered, these networks can contribute to GI and impact tumor response to chemo- and radiation therapies. Furthermore, the ineffectiveness of SMO inhibitors in clinical studies argues for the development of GLI1-specific inhibitors in order to develop effective therapeutic modalities to treat these tumors. In this review, we focus on summarizing current understanding of the molecular, biochemical and cellular basis for aberrant GLI1 expression and discuss GLI1-mediated HH signaling on DNA damage responses, carcinogenesis and chemoresistance

    Rad18 E3 ubiquitin ligase activity mediates Fanconi anemia pathway activation and cell survival following DNA topoisomerase 1 inhibition

    Get PDF
    Camptothecin (CPT) and related chemotherapeutic drugs induce formation of DNA topoisomerase I (Top1) covalent or cleavage complexes (Top1ccs) that block leading-strand DNA synthesis and elicit DNA Double Stranded Breaks (DSB) during S phase. The Fanconi Anemia (FA) pathway is implicated in tolerance of CPT-induced DNA damage yet the mechanism of FA pathway activation by Top1 poisons has not been studied. We show here that the FA core complex protein FANCA and monoubiquitinated FANCD2 (an effector of the FA pathway) are rapidly mobilized to chromatin in response to CPT treatment in several human cancer cell lines and untransformed primary human dermal fibroblasts. FANCD2 depletion using siRNA leads to impaired recovery from CPT-induced inhibition or DNA synthesis, persistence of Ī³H2AX (a DSB marker) and reduced cell survival following CPT treatment. The E3 ubiquitin ligase Rad18 is necessary for CPT-induced recruitment of FANCA and FANCD2 to chromatin. Moreover, Rad18-depletion recapitulates the DNA synthesis and survival defects of FANCD2-deficiency in CPT-treated cells. It is well-established that Rad18 promotes FA pathway activation and DNA damage tolerance in response to bulky DNA lesions via a mechanism involving PCNA monoubiquitination. In contrast, PCNA monoubiquitination is not involved in Rad18-mediated FA pathway activation or cell survival following acquisition of CPT-induced DSB. Moreover, while Rad18 is implicated in recombinational repair of DSB via an E3 ligase-independent mechanism, we demonstrate that Rad18 E3 ligase activity is essential for appropriate FA pathway activation and DNA damage tolerance after CPT treatment. Taken together, our results define a novel pathway of Rad18-dependent DSB repair that is dissociable from known Rad18-mediated DNA repair mechanisms based on its independence from PCNA ubiquitination and requirement for E3 ligase activity

    Alterations in linker flexibility suppress DNA topoisomerase I mutant-induced cell lethality

    Get PDF
    Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology via the formation of a covalent enzyme-DNA intermediate, which is reversibly stabilized by the anticancer agent camptothecin (CPT). Crystallographic studies of the 70-kDa C terminus of human Top1p bound to duplex DNA describe a monomeric protein clamp circumscribing the DNA helix. The structures, which lack the N-terminal domain, comprise the conserved clamp, an extended linker domain, and the conserved C-terminal active site Tyr domain. CPT bound to the covalent Top1p-DNA complex limits linker flexibility, allowing structural determination of this domain. We previously reported that mutation of Ala(653) to Pro in the linker increases the rate of enzyme-catalyzed DNA religation, thereby rendering Top1A653Pp resistant to CPT (Fiorani, P., Bruselles, A., Falconi, M., Chillemi, G., Desideri, A., and Benedetti P. (2003) J. Biol. Chem. 278, 43268-43275). Molecular dynamics studies suggested mutation-induced increases in linker flexibility alter Top1p catalyzed DNA religation. To address the functional consequences of linker flexibility on enzyme catalysis and drug sensitivity, we investigated the interactions of the A653P linker mutation with a self-poisoning T718A mutation within the active site of Top1p. The A653P mutation suppressed the lethal phenotype of Top1T718Ap in yeast, yet did not restore enzyme sensitivity to CPT. However, the specific activity of the double mutant was decreased in vivo and in vitro, consistent with a decrease in DNA binding. These findings support a model where changes in the flexibility or orientation of the linker alter the geometry of the active site and thereby the kinetics of DNA cleavage/religation catalyzed by Top1p

    Synthesis, anti-angiogenic and DNA cleavage studies of novel N-(4-methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)piperidine-4-carboxamide derivatives

    No full text
    Abstract A series of novel N-(4-methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)piperidine-4-carboxamide derivatives 10(aā€“f), 12(aā€“c) and 14(aā€“c) were synthesized and characterized by FTIR, 1H-NMR, mass spectral and elemental analysis. The efficacy of these derivatives to inhibit in vivo angiogenesis was evaluated using chick chorioallantoic membrane (CAM) model and their DNA cleavage abilities were evaluated after incubating with calf thymus DNA followed by gel electrophoresis. These novel piperidine analogues efficiently blocked the formation of blood vessels in vivo in CAM model and exhibited differential migration and band intensities in DNA binding/cleavage assays. Among the tested compounds 10a, 10b, 10c, 12b, 14b and 14c showed significant anti-angiogenic and DNA cleavage activities compared to their respective controls and the other derivatives used in this study. These observations suggest that the presence of electron donating and withdrawing groups at positions 2, 3 and 4 of the phenyl ring of the side chain may determine their potency and as anticancer agents by exerting both anti-angiogenic and cytotoxic effects
    corecore