595 research outputs found

    Novel Quantum Criticality in CeRu2_2Si2_2 near Absolute Zero Observed by Thermal Expansion and Magnetostriction

    Get PDF
    We report linear thermal expansion and magnetostriction measurements for CeRu2_2Si2_2 in magnetic fields up to 52.6 mT and at temperatures down to 1 mK. At high temperatures, this compound showed Landau-Fermi-liquid behavior: The linear thermal expansion coefficient and the magnetostriction coefficient were proportional to the temperature and magnetic field, respectively. In contrast, a pronounced non-Fermi-liquid effect was found below 50 mK. The negative contribution of thermal expansion and magnetostriction suggests the existence of an additional quantum critical point

    Vascular Sphincter and Microangioarchitecture in the Central Nervous System: Constriction of Intraparenchymal Blood Vessels Following a Treatment of Vasoconstrictive Neurotransmitter

    Get PDF
    The site of action of neuropeptide Y (NPY), a potent vasoconstrictive neurotransmitter, on the intraparenchymal blood vessels in the rat parietal cortex was demonstrated using a corrosion cast technique with scanning electron microscopy. Our observations were confined to the cortical area where the regional cerebral blood flow (rCBF) had been reduced significantly by in situ application of NPY. A striking finding in that area was the diffuse narrowing of the perforating arteries in the upper cortical layers. Ring-like compressions on the corrosion casts, presumably formed by active vascular sphincters along the arteries, capillaries and venules within the brain parenchyma, seemed to be more prominent in the perforating arteries of the NPY-treated cortex as compared with those of control cortex. We conclude that NPY-containing nerve fibers along the parenchymal blood vessels may take part in regulating the rCBF primarily by reducing the caliber of the proximal perforating arteries

    IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice

    Get PDF
    Background<p></p> The initiation and regulation of pulmonary fibrosis are not well understood. IL-33, an important cytokine for respiratory diseases, is overexpressed in the lungs of patients with idiopathic pulmonary fibrosis.<p></p> Objectives<p></p> We aimed to determine the effects and mechanism of IL-33 on the development and severity of pulmonary fibrosis in murine bleomycin-induced fibrosis.<p></p> Methods<p></p> Lung fibrosis was induced by bleomycin in wild-type or Il33r (St2)−/− C57BL/6 mice treated with the recombinant mature form of IL-33 or anti–IL-33 antibody or transferred with type 2 innate lymphoid cells (ILC2s). The development and severity of fibrosis was evaluated based on lung histology, collagen levels, and lavage cytology. Cytokine and chemokine levels were quantified by using quantitative PCR, ELISA, and cytometry.<p></p> Results<p></p> IL-33 is constitutively expressed in lung epithelial cells but is induced in macrophages by bleomycin. Bleomycin enhanced the production of the mature but reduced full-length form of IL-33 in lung tissue. ST2 deficiency, anti–IL-33 antibody treatment, or alveolar macrophage depletion attenuated and exogenous IL-33 or adoptive transfer of ILC2s enhanced bleomycin-induced lung inflammation and fibrosis. These pathologic changes were accompanied, respectively, by reduced or increased IL-33, IL-13, TGF-β1, and inflammatory chemokine production in the lung. Furthermore, IL-33 polarized M2 macrophages to produce IL-13 and TGF-β1 and induced the expansion of ILC2s to produce IL-13 in vitro and in vivo.<p></p> Conclusions<p></p> IL-33 is a novel profibrogenic cytokine that signals through ST2 to promote the initiation and progression of pulmonary fibrosis by recruiting and directing inflammatory cell function and enhancing profibrogenic cytokine production in an ST2- and macrophage-dependent manner

    Internalization of Formyl Peptide Receptor in Leukocytes Subject to Fluid Stresses

    Get PDF
    Human leukocytes retract pseudopods under normal physiologic levels of fluid shear stress even in the absence of any other mediator. To gain more detailed understanding of the mechanisms that regulate this cell behavior, we exposed leukocytes to a steady state laminar shear field in a flow chamber and computed the fluid stresses distribution on the surface of individual cells with and without pseudopod. The surface fluid stress distribution on such cell is quite inhomogeneous. We hypothesized that the local fluid stresses on the cell surface serve to regulate pseudopod retraction by way of membrane receptors, especially the formyl peptide receptor (FPR). Comparison of the receptor distribution and the stress distribution over the surface of the cells indicates that the membrane fluid stress alone is not directly correlated with the extent of regional pseudopod retraction, giving further support to the hypothesis that membrane receptors are involved in the mechanotransduction of leukocytes. We observed that after exposure to fluid shear the FPR was internalized to a small intracellular compartment. This internalization appears to be independent of the original location of the receptor on the surface of the cell and the FPR appears to be more derived from multiple locations on the cell, with both higher and lower fluid stresses. The evidence suggests that FPR involvement in the pseudopod-retraction process is not limited to cell surface regions with the highest fluid shear stress, but rather a more global occurrence over the majority of the cell membrane

    Development of a field measurement system for the Bulk HTSC SAU

    Get PDF
    11th International Conference on Synchrotron Radiation Instrumentation (SRI 2012)To realize a short-period strong-field undulator, we proposed a high temperature superconducting bulk staggered array undulator (Bulk HTSC SAU) and proceeded proof of principle experiments and numerical studies. We have succeeded to generate periodic transverse magnetic fields whose strength was controlled by an external solenoid field. At the same time, we revealed a problem; at both ends of undulator, field distribution is substantially distorted. We proposed several approaches of field correction. To verify the effectiveness of these field correction methods, it is necessary to measure the magnetic field distribution precisely, not only inside of the undulator but also both ends. For this purpose, we developed a rotary measurement system to measure the magnetic field distribution at the end of the undulator. Multiple Hall sensors are placed on a circuit board at equal intervals from the centre of the board. By rotating and moving the board, the probe can measure axial field in 3D space on the undulator ends. In this paper, we deliver specifics of the system

    Design Study for Direction Variable Compton Scattering Gamma Ray

    Get PDF
    11th International Conference on Synchrotron Radiation Instrumentation (SRI 2012)A monochromatic gamma ray beam is attractive for isotope-specific material/medical imaging or non-destructive inspection. A laser Compton scattering (LCS) gamma ray source which is based on the backward Compton scattering of laser light on high-energy electrons can generate energy variable quasi-monochromatic gamma ray. Due to the principle of the LCS gamma ray, the direction of the gamma beam is limited to the direction of the high-energy electrons. Then the target object is placed on the beam axis, and is usually moved if spatial scanning is required. In this work, we proposed an electron beam transport system consisting of four bending magnets which can stick the collision point and control the electron beam direction, and a laser system consisting of a spheroidal mirror and a parabolic mirror which can also stick the collision point. Then the collision point can be placed on one focus of the spheroid. Thus gamma ray direction and collision angle between the electron beam and the laser beam can be easily controlled. As the results, travelling direction of the LCS gamma ray can be controlled under the limitation of the beam transport system, energy of the gamma ray can be controlled by controlling incident angle of the colliding beams, and energy spread can be controlled by changing the divergence of the laser beam

    Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments

    Get PDF
    Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
    corecore