36 research outputs found

    The Role of Birds as Potential Reservoirs of West Nile Virus in the Territory of the Russian Federation

    Get PDF
    Submitted are the materials on epizootiology of West Nile Fever in birds, taking into account their migration. Described are the characteristics of WNF in wild and synanthropic birds. Ecological relationships between birds, mosquitoes, ticks and West Nile virus are analyzed. Main autumn bird migratory directions are characterized and the data on WNF monitoring in birds in different geographical regions of Russia are presented

    A profluorescent azaphenalene nitroxide for nitroxide-mediated polymerization

    Get PDF
    A novel nitroxide-mediated polymerization (NMP) control agent; 1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl (TMAO), was used in the free-radical polymerization of styrene. The conversion of styrene during NMP was studied using FT-Raman spectroscopy and the effectiveness of TMAO as a NMP control agent was assessed by GPC analysis. Fidelity of the TMAO-alkoxyamine end-group on the synthesized polymers was confirmed by GPC, UV-Vis and fluorescence spectroscopic analyses. Comparison to the well known NMP control agent, TEMPO was made. TMAO showed control of molecular weight approaching that of TEMPO. Attempts to improve the properties of TMAO as an NMP control agent by synthesizing an analogue with bulkier substituents around the nitroxide did not generate the target molecule but demonstrated some of the interesting chemistry of the azaphenalene ring syste

    Ability of nitrones of various structures to control the radical polymerization of styrene mediated by in situ formed nitroxides

    Full text link
    The ability of several nitrones to control the radical polymerization of styrene at 110 °C has been investigated by high-throughput experimentation. The nitrone/free radical initiator pair dictates the structure of the nitroxide and the alkoxyamine formed in situ, which determines the position of the equilibrium between the active and the dormant species operating in the nitroxide-mediated polymerization. For the styrene polymerization to be controlled, the nitrone must be reacted with 2,2'-azo-bis-isobutyronitrile (AIBN) at 85 °C, prior to addition of styrene and polymerization at 110 °C. The effect of the nitrone structure on the kinetics of the styrene polymerization has been emphasized. Amongst all the nitrones tested, those of the C-phenyl-N-tert-butylnitrone (PBN) type are the most efficient in terms of polymerization rate, control of molecular weight and polydispersity. Electrophilic substitution of the phenyl group of PBN by either an electrodonor or an electroacceptor group has only a minor effect on the polymerization kinetics. Importantly, the polymerization rate is not governed by the thermal polymerization of styrene but by the alkoxyamine formed in situ during the pre-reaction step. The initiation efficiency is, however, very low, consistent with a limited conversion of the nitrone into nitroxide and alkoxyamine
    corecore