117 research outputs found
Structural Properties of the Sliding Columnar Phase in Layered Liquid Crystalline Systems
Under appropriate conditions, mixtures of cationic and neutral lipids and DNA
in water condense into complexes in which DNA strands form local 2D smectic
lattices intercalated between lipid bilayer membranes in a lamellar stack.
These lamellar DNA-cationic-lipid complexes can in principle exhibit a variety
of equilibrium phases, including a columnar phase in which parallel DNA strands
from a 2D lattice, a nematic lamellar phase in which DNA strands align along a
common direction but exhibit no long-range positional order, and a possible new
intermediate phase, the sliding columnar (SC) phase, characterized by a
vanishing shear modulus for relative displacement of DNA lattices but a
nonvanishing modulus for compressing these lattices. We develop a model capable
of describing all phases and transitions among them and use it to calculate
structural properties of the sliding columnar phase. We calculate displacement
and density correlation functions and x-ray scattering intensities in this
phase and show, in particular, that density correlations within a layer have an
unusual dependence on separation r. We
investigate the stability of the SC phase with respect to shear couplings
leading to the columnar phase and dislocation unbinding leading to the lamellar
nematic phase. For models with interactions only between nearest neighbor
planes, we conclude that the SC phase is not thermodynamically stable.
Correlation functions in the nematic lamellar phase, however, exhibit SC
behavior over a range of length scalesComment: 28 pages, 4 figure
The multiple faces of self-assembled lipidic systems
Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled
- …