41 research outputs found

    Continuous-Variable Quantum Computing in Optical Time-Frequency Modes using Quantum Memories

    Full text link
    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate and measure 2D cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that is a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.Comment: 5 pages, 6 figures, and supplementary information. Updated to be consistent with published versio

    An Optimal Design for Universal Multiport Interferometers

    Full text link
    Universal multiport interferometers, which can be programmed to implement any linear transformation between multiple channels, are emerging as a powerful tool for both classical and quantum photonics. These interferometers are typically composed of a regular mesh of beam splitters and phase shifters, allowing for straightforward fabrication using integrated photonic architectures and ready scalability. The current, standard design for universal multiport interferometers is based on work by Reck et al (Phys. Rev. Lett. 73, 58, 1994). We demonstrate a new design for universal multiport interferometers based on an alternative arrangement of beam splitters and phase shifters, which outperforms that by Reck et al. Our design occupies half the physical footprint of the Reck design and is significantly more robust to optical losses.Comment: 8 pages, 4 figure

    Gaussian Optical Ising Machines

    Get PDF
    It has recently been shown that optical parametric oscillator (OPO) Ising machines, consisting of coupled optical pulses circulating in a cavity with parametric gain, can be used to probabilistically find low-energy states of Ising spin systems. In this work, we study optical Ising machines that operate under simplified Gaussian dynamics. We show that these dynamics are sufficient for reaching probabilities of success comparable to previous work. Based on this result, we propose modified optical Ising machines with simpler designs that do not use parametric gain yet achieve similar performance, thus suggesting a route to building much larger systems.Comment: 6 page

    Tensor network states in time-bin quantum optics

    Full text link
    The current shift in the quantum optics community towards large-size experiments -- with many modes and photons -- necessitates new classical simulation techniques that go beyond the usual phase space formulation of quantum mechanics. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. As a toy model, we extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments

    Joint estimation of phase and phase diffusion for quantum metrology

    Get PDF
    Phase estimation, at the heart of many quantum metrology and communication schemes, can be strongly affected by noise, whose amplitude may not be known, or might be subject to drift. Here, we investigate the joint estimation of a phase shift and the amplitude of phase diffusion, at the quantum limit. For several relevant instances, this multiparameter estimation problem can be effectively reshaped as a two-dimensional Hilbert space model, encompassing the description of an interferometer phase probed with relevant quantum states -- split single-photons, coherent states or N00N states. For these cases, we obtain a trade-off bound on the statistical variances for the joint estimation of phase and phase diffusion, as well as optimum measurement schemes. We use this bound to quantify the effectiveness of an actual experimental setup for joint parameter estimation for polarimetry. We conclude by discussing the form of the trade-off relations for more general states and measurements.Comment: Published in Nature Communications. Supplementary Information available at http://www.nature.com/ncomms/2014/140404/ncomms4532/extref/ncomms4532-s1.pd

    Ultrahigh and persistent optical depths of caesium in Kagom\'e-type hollow-core photonic crystal fibres

    Full text link
    Alkali-filled hollow-core fibres are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption. However, until now these large optical depths could only be generated for seconds at most once per day, severely limiting the practicality of the technology. Here we report the generation of highest observed transient (>105>10^5 for up to a minute) and highest observed persistent (>2000>2000 for hours) optical depths of alkali vapours in a light-guiding geometry to date, using a caesium-filled Kagom\'e-type hollow-core photonic crystal fibre. Our results pave the way to light-matter interaction experiments in confined geometries requiring long operation times and large atomic number densities, such as generation of single-photon-level nonlinearities and development of single photon quantum memories.Comment: Author Accepted versio

    Tomography of photon-number resolving continuous-output detectors

    Full text link
    We report a comprehensive approach to analysing continuous-output photon detectors. We employ principal component analysis to maximise the information extracted, followed by a novel noise-tolerant parameterised approach to the tomography of PNRDs. We further propose a measure for rigorously quantifying a detector's photon-number-resolving capability. Our approach applies to all detectors with continuous-output signals. We illustrate our methods by applying them to experimental data obtained from a transition-edge sensor (TES) detector.Comment: 5 pages, 3 figures, also includes supplementary informatio
    corecore