31 research outputs found

    Interferometry with Photon-Subtracted Thermal Light

    Get PDF
    We propose and implement a quantum procedure for enhancing the sensitivity with which one can determine the phase shift experienced by a weak light beam possessing thermal statistics in passing through an interferometer. Our procedure entails subtracting exactly one (which can be generalized to m) photons from the light field exiting an interferometer containing a phase-shifting element in one of its arms. As a consequence of the process of photon subtraction, and somewhat surprisingly, the mean photon number and signal-to-noise ratio of the resulting light field are thereby increased, leading to enhanced interferometry. This method can be used to increase measurement sensitivity in a variety of practical applications, including that of forming the image of an object illuminated only by weak thermal light

    Material-specific gap function in the high-temperature superconductors

    Full text link
    We present theoretical arguments and experimental support for the idea that high-Tc superconductivity can occur with s-wave, d-wave, or mixed-wave pairing in the context of a magnetic mechanism. The size and shape of the gap is different for different materials. The theoretical arguments are based on the t-J model as derived from the Hubbard model so that it necessarily includes three-site terms. We argue that this should be the basic minimal model for high-Tc systems. We analyze this model starting with the dilute limit which can be solved exactly, passing then to the Cooper problem which is numerically tractable, then ending with a mean field approach. It is found that the relative stability of s-wave and d-wave depends on the size and the shape of the Fermi surface. We identify three striking trends. First, materials with large next-nearest-neighbor hopping (such as YBa(2)Cu(3)O(7-x)) are nearly pure d-wave, whereas nearest-neighbor materials (such as La(2-x)Sr(x)CuO(4)) tend to be more s-wave-like. Second, low hole doping materials tend to be pure d-wave, but high hole doping leads to s-wave. Finally, the optimum hole doping level increases as the next-nearest-neighbor hopping increases. We examine the experimental evidence and find support for this idea that gap function in the high-temperature superconductors is material-specific.Comment: 20 pages; requires revtex.sty v3.0, epsf.sty; includes 6 EPS figures; Postscript version also available at http://lifshitz.physics.wisc.edu/www/koltenbah/papers/gapfunc2.ps . This version contains an extensive amount of new work including theoretical background, an additional mean field treatment with new figures, and a more thorough experimental surve

    d-wave pairing symmetry in cuprate superconductors

    Full text link
    Phase-sensitive tests of pairing symmetry have provided strong evidence for predominantly d-wave pairing symmetry in both hole- and electron-doped high-Tc cuprate superconductors. Temperature dependent measurements in YBCO indicate that the d-wave pairing dominates, with little if any imaginary component, at all temperatures from 0.5K through Tc. In this article we review some of this evidence and discuss the implications of the universal d-wave pairing symmetry in the cuprates.Comment: 4 pages, M2S 2000 conference proceeding

    Emitter-Metasurface Interface for Manipulating Emission Characteristics of Quantum Defects

    Get PDF
    We demonstrate a chip-scale quantum emitter-metamaterial device that emits highly directional photons. Our device opens the door for quantum imaging of yveak sources by adding photon(s) to manipulate the photon statistics for improved signal-to-noise ratio

    Emitter-Metasurface Interface for Manipulating Emission Characteristics of Quantum Defects

    Get PDF
    We demonstrate a chip-scale quantum emitter-metamaterial device that emits highly directional photons. Our device opens the door for quantum imaging of yveak sources by adding photon(s) to manipulate the photon statistics for improved signal-to-noise ratio

    Mixed symmetry superconductivity in two-dimensional Fermi liquids

    Full text link
    We consider a 2D isotropic Fermi liquid with attraction in both ss and dd channels and examine the possibility of a superconducting state with mixed ss and dd symmetry of the gap function. We show that both in the weak coupling limit and at strong coupling, a mixed s+ids+id symmetry state is realized in a certain range of interaction. Phase transitions between the mixed and the pure symmetry states are second order. We also show that there is no stable mixed s+ds+d symmetry state at any coupling.Comment: 3 figures attached in uuencoded gzipped file

    Chiral d+is superconducting state in the two dimensional t-t' Hubbard model

    Full text link
    Applying the recently developed variational approach to Kohn-Luttinger superconductivity to the t-t' Hubbard model in two dimensions, we have found, for sizeable next-nearest neighbor hopping, an electron density controlled quantum phase transition between a d-wave superconducting state close to half filling and an s-wave superconductor at lower electron density. The transition occurs via an intermediate time reversal breaking d+is superconducting phase, which is characterized by nonvanishing chirality and density-current correlation. Our results suggest the possibility of a bulk time reversal symmetry breaking state in overdoped cuprates

    Phonon Localization in One-Dimensional Quasiperiodic Chains

    Full text link
    Quasiperiodic long range order is intermediate between spatial periodicity and disorder, and the excitations in 1D quasiperiodic systems are believed to be transitional between extended and localized. These ideas are tested with a numerical analysis of two incommensurate 1D elastic chains: Frenkel-Kontorova (FK) and Lennard-Jones (LJ). The ground state configurations and the eigenfrequencies and eigenfunctions for harmonic excitations are determined. Aubry's "transition by breaking the analyticity" is observed in the ground state of each model, but the behavior of the excitations is qualitatively different. Phonon localization is observed for some modes in the LJ chain on both sides of the transition. The localization phenomenon apparently is decoupled from the distribution of eigenfrequencies since the spectrum changes from continuous to Cantor-set-like when the interaction parameters are varied to cross the analyticity--breaking transition. The eigenfunctions of the FK chain satisfy the "quasi-Bloch" theorem below the transition, but not above it, while only a subset of the eigenfunctions of the LJ chain satisfy the theorem.Comment: This is a revised version to appear in Physical Review B; includes additional and necessary clarifications and comments. 7 pages; requires revtex.sty v3.0, epsf.sty; includes 6 EPS figures. Postscript version also available at http://lifshitz.physics.wisc.edu/www/koltenbah/koltenbah_homepage.htm
    corecore