20 research outputs found

    Quantitative analysis of microbial sensing and motility

    Get PDF
    Microbes need to extract relevant information from their environment and use this information to produce adequate behavioral responses that ensure their survival. Quantitative, mathematical analysis of microbial sensory systems (such as various signaling pathways) and their effectors (such as bacterial motors) forms the basis of the field of systems biology. Because of their relative simplicity, in comparison with analogous systems in multicellular organisms, these structures are more amenable to quantitative modelling. In this dissertation I present the quantitative analysis of three microbial sensory-effector systems, two in bacteria and one in the unicellular eukaryote Saccharomyces cerevisiae. In all three cases I look at a behavior that is an evolutionarily selected response to a given problem that the microorganism is confronted with. I then explain the mechanistic basis of this response in the sensory or effector system by a mathematical model. In the first case, mating in yeast cells, the problem the cells need to solve is to establish the likelihood of mating and invest cellular resources accordingly to prepare for the mating event. The solution that wild-type yeast MATa cells have evolved to tackle this problem is fractional sensing, the ability to sense robustly the fraction of partner cells in a mixed population. The mechanism that enables this behavior is the degradation of the partner cells’ pheromone signal by a secreted enzyme. I show mathematically that the necessary consequence of this mechanism is the rescaling of the signal strength proportionally to the fraction of partner cells, as opposed to their absolute quantity. Additionally, I also explain the experimentally observed difference between the fractionally sensing wild-type cells and the mutants performing absolute sensing, due to the latter’s lack of a signal attenuation mechanism. Moreover, by a cost-benefit model of mating, I show that the strategy of fractional sensing and resource investment is optimal, as compared to sensing the absolute amount of partners. In the second case, I look at the most prevalent bacterial signaling systems, the so-called two-component systems and their capacity to generate bistability, or, in behavioral terms, memory. In the case of two-component systems that control developmental processes, an irreversible shift is required at the level of individual cells: once the system is turned ‘on’, it should not revert to its ‘off’ state, within some range of the input. At the population level, because of the stochasticity of chemical reactions and variation in expression levels, a bistable control system can result in a bimodal distribution with some cells in ‘on’ and others in ‘off’ state. In fluctuating and unpredictable environments this strategy of ‘bet hedging’ is another advantageous feature of bistability. I first describe post-translational mechanisms that can generate bistable behavior and analyze the parametric properties of bistable systems. Second, I show that the transcriptional auto-induction of pathway components can lead to bistability in the ‘canonical’ two-component system with a bifunctional sensor kinase as well, a question not resolved in the previous literature. In the third case, I analyze the motility of the marine bacteria Shewanella putrefaciens. Higher efficiency of spreading and chemotaxis is expected to lead to higher fitness as it enables a bacterial population to better explore and exploit the resources of its environment. Wild-type Shewanella cells achieve this higher efficiency by inducing a lateral flagellar system, leading to a lower mean turning angle. By lowering the mean of the turning angle distribution, the presence of the lateral flagella leads to higher directional persistence and hence increased spreading efficiency. By both analytical calculations and stochastic simulations I reproduce the experimentally observed trends of spreading. Furthermore, I show that in shallow gradients the higher directional persistence also leads to higher chemotactic efficiency. By mathematical analysis I was able to identify the mechanisms underlying these evolutionarily selected behaviors. Moreover, in the case of yeast mating, I also showed that the observed behavior of fractional sensing is optimal in cost-benefit terms. In the case of transcriptionally induced bistability in bacterial two-component systems, the analysis identified parametric properties of bistable systems that can be potentially used to engineer monostable signaling systems into bistable ones experimentally

    Date of introduction and epidemiologic patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Mogadishu, Somalia: estimates from transmission modelling of satellite-based excess mortality data in 2020.

    Get PDF
    BACKGROUND: In countries with weak surveillance systems, confirmed coronavirus disease 2019 (COVID-19) deaths are likely to underestimate the pandemic’s death toll. Many countries also have incomplete vital registration systems, hampering excess mortality estimation. Here, we fitted a dynamic transmission model to satellite imagery data of cemeteries in Mogadishu, Somalia during 2020 to estimate the date of introduction and other epidemiologic parameters of the early spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in this low-income, crisis-affected setting. METHODS: We performed Markov chain Monte Carlo (MCMC) fitting with an age-structured compartmental COVID-19 model to provide median estimates and credible intervals for the date of introduction, the basic reproduction number (R0) and the effect of non-pharmaceutical interventions (NPIs) up to August 2020. RESULTS: Under the assumption that excess deaths in Mogadishu March-August 2020 were attributable to SARS-CoV-2 infections, we arrived at median estimates of November-December 2019 for the date of introduction and low R0 estimates (1.4-1.7) reflecting the slow and early rise and long plateau of excess deaths. The date of introduction, the amount of external seeding, the infection fatality rate (IFR) and the effectiveness of NPIs are correlated parameters and not separately identifiable in a narrow range from deaths data. Nevertheless, to obtain introduction dates no earlier than November 2019 a higher population-wide IFR (≄0.7%) had to be assumed than obtained by applying age-specific IFRs from high-income countries to Somalia’s age structure. CONCLUSIONS: Model fitting of excess mortality data across a range of plausible values of the IFR and the amount of external seeding suggests an early SARS-CoV-2 introduction event may have occurred in Somalia in November-December 2019. Transmissibility in the first epidemic wave was estimated to be lower than in European settings. Alternatively, there was another, unidentified source of sustained excess mortality in Mogadishu from March to August 2020

    Comparative assessment of methods for short-term forecasts of COVID-19 hospital admissions in England at the local level

    Get PDF
    Background: Forecasting healthcare demand is essential in epidemic settings, both to inform situational awareness and facilitate resource planning. Ideally, forecasts should be robust across time and locations. During the COVID-19 pandemic in England, it is an ongoing concern that demand for hospital care for COVID-19 patients in England will exceed available resources. Methods: We made weekly forecasts of daily COVID-19 hospital admissions for National Health Service (NHS) Trusts in England between August 2020 and April 2021 using three disease-agnostic forecasting models: a mean ensemble of autoregressive time series models, a linear regression model with 7-day-lagged local cases as a predictor, and a scaled convolution of local cases and a delay distribution. We compared their point and probabilistic accuracy to a mean-ensemble of them all and to a simple baseline model of no change from the last day of admissions. We measured predictive performance using the weighted interval score (WIS) and considered how this changed in different scenarios (the length of the predictive horizon, the date on which the forecast was made, and by location), as well as how much admissions forecasts improved when future cases were known. Results: All models outperformed the baseline in the majority of scenarios. Forecasting accuracy varied by forecast date and location, depending on the trajectory of the outbreak, and all individual models had instances where they were the top- or bottom-ranked model. Forecasts produced by the mean-ensemble were both the most accurate and most consistently accurate forecasts amongst all the models considered. Forecasting accuracy was improved when using future observed, rather than forecast, cases, especially at longer forecast horizons. Conclusions: Assuming no change in current admissions is rarely better than including at least a trend. Using confirmed COVID-19 cases as a predictor can improve admissions forecasts in some scenarios, but this is variable and depends on the ability to make consistently good case forecasts. However, ensemble forecasts can make forecasts that make consistently more accurate forecasts across time and locations. Given minimal requirements on data and computation, our admissions forecasting ensemble could be used to anticipate healthcare needs in future epidemic or pandemic settings

    The impact of COVID-19 vaccination in prisons in England and Wales : a metapopulation model

    Get PDF
    Background: High incidence of cases and deaths due to coronavirus disease 2019 (COVID-19) have been reported in prisons worldwide. This study aimed to evaluate the impact of different COVID-19 vaccination strategies in epidemiologically semi-enclosed settings such as prisons, where staff interact regularly with those incarcerated and the wider community. Methods: We used a metapopulation transmission-dynamic model of a local prison in England and Wales. Two-dose vaccination strategies included no vaccination, vaccination of all individuals who are incarcerated and/or staff, and an age-based approach. Outcomes were quantified in terms of COVID-19-related symptomatic cases, losses in quality-adjusted life-years (QALYs), and deaths. Results: Compared to no vaccination, vaccinating all people living and working in prison reduced cases, QALY loss and deaths over a one-year period by 41%, 32% and 36% respectively. However, if vaccine introduction was delayed until the start of an outbreak, the impact was negligible. Vaccinating individuals who are incarcerated and staff over 50 years old averted one death for every 104 vaccination courses administered. All-staff-only strategies reduced cases by up to 5%. Increasing coverage from 30 to 90% among those who are incarcerated reduced cases by around 30 percentage points. Conclusions: The impact of vaccination in prison settings was highly dependent on early and rapid vaccine delivery. If administered to both those living and working in prison prior to an outbreak occurring, vaccines could substantially reduce COVID-19-related morbidity and mortality in prison settings

    The contribution of hospital-acquired infections to the COVID-19 epidemic in England in the first half of 2020

    Get PDF
    Background: SARS-CoV-2 is known to transmit in hospital settings, but the contribution of infections acquired in hospitals to the epidemic at a national scale is unknown. Methods: We used comprehensive national English datasets to determine the number of COVID-19 patients with identified hospital-acquired infections (with symptom onset > 7 days after admission and before discharge) in acute English hospitals up to August 2020. As patients may leave the hospital prior to detection of infection or have rapid symptom onset, we combined measures of the length of stay and the incubation period distribution to estimate how many hospital-acquired infections may have been missed. We used simulations to estimate the total number (identified and unidentified) of symptomatic hospital-acquired infections, as well as infections due to onward community transmission from missed hospital-acquired infections, to 31st July 2020. Results: In our dataset of hospitalised COVID-19 patients in acute English hospitals with a recorded symptom onset date (n = 65,028), 7% were classified as hospital-acquired. We estimated that only 30% (range across weeks and 200 simulations: 20–41%) of symptomatic hospital-acquired infections would be identified, with up to 15% (mean, 95% range over 200 simulations: 14.1–15.8%) of cases currently classified as community-acquired COVID-19 potentially linked to hospital transmission. We estimated that 26,600 (25,900 to 27,700) individuals acquired a symptomatic SARS-CoV-2 infection in an acute Trust in England before 31st July 2020, resulting in 15,900 (15,200–16,400) or 20.1% (19.2–20.7%) of all identified hospitalised COVID-19 cases. Conclusions: Transmission of SARS-CoV-2 to hospitalised patients likely caused approximately a fifth of identified cases of hospitalised COVID-19 in the “first wave” in England, but less than 1% of all infections in England. Using time to symptom onset from admission for inpatients as a detection method likely misses a substantial proportion (> 60%) of hospital-acquired infections

    Changes in social contacts in England during the COVID-19 pandemic between March 2020 and March 2021 as measured by the CoMix survey : a repeated cross-sectional study

    Get PDF
    Background During: the Coronavirus Disease 2019 (CAU OVID-19): pandemic, the United Kingdom government imposed public health policies in England to reduce social contacts in hopes of curbing virus transmission. We conducted a repeated cross-sectional study to measure contact patterns weekly from March 2020 to March 2021 to estimate the impact of these policies, covering 3 national lockdowns interspersed by periods of less restrictive policies. Methods and findings The repeated cross-sectional survey data were collected using online surveys of representative samples of the UK population by age and gender. Survey participants were recruited by the online market research company Ipsos MORI through internet-based banner and social media ads and email campaigns. The participant data used for this analysis are restricted to those who reported living in England. We calculated the mean daily contacts reported using a (clustered) bootstrap and fitted a censored negative binomial model to estimate age-stratified contact matrices and estimate proportional changes to the basic reproduction number under controlled conditions using the change in contacts as a scaling factor. To put the findings in perspective, we discuss contact rates recorded throughout the year in terms of previously recorded rates from the POLYMOD study social contact study. The survey recorded 101,350 observations from 19,914 participants who reported 466,710 contacts over 53 weeks. We observed changes in social contact patterns in England over time and by participants’ age, personal risk factors, and perception of risk. The mean reported contacts for adults 18 to 59 years old ranged between 2.39 (95% confidence interval [CI] 2.20 to 2.60) contacts and 4.93 (95% CI 4.65 to 5.19) contacts during the study period. The mean contacts for school-age children (5 to 17 years old) ranged from 3.07 (95% CI 2.89 to 3.27) to 15.11 (95% CI 13.87 to 16.41). This demonstrates a sustained decrease in social contacts compared to a mean of 11.08 (95% CI 10.54 to 11.57) contacts per participant in all age groups combined as measured by the POLYMOD social contact study in 2005 to 2006. Contacts measured during periods of lockdowns were lower than in periods of eased social restrictions. The use of face coverings outside the home has remained high since the government mandated use in some settings in July 2020. The main limitations of this analysis are the potential for selection bias, as participants are recruited through internet-based campaigns, and recall bias, in which participants may under- or over-report the number of contacts they have made

    Using high-resolution contact networks to evaluate SARS-CoV-2 transmission and control in large-scale multi-day events

    Get PDF
    The emergence of highly transmissible SARS-CoV-2 variants has created a need to reassess the risk posed by increasing social contacts as countries resume pre-pandemic activities, particularly in the context of resuming large-scale events over multiple days. To examine how social contacts formed in different activity settings influences interventions required to control Delta variant outbreaks, we collected high-resolution data on contacts among passengers and crew on cruise ships and combined the data with network transmission models. We found passengers had a median of 20 (IQR 10–36) unique close contacts per day, and over 60% of their contact episodes were made in dining or sports areas where mask wearing is typically limited. In simulated outbreaks, we found that vaccination coverage and rapid antigen tests had a larger effect than mask mandates alone, indicating the importance of combined interventions against Delta to reduce event risk in the vaccine era

    Estimating the impact of reopening schools on the reproduction number of SARS-CoV-2 in England, using weekly contact survey data

    Get PDF
    Background: Schools were closed in England on 4 January 2021 as part of increased national restrictions to curb transmission of SARS-CoV-2. The UK government reopened schools on 8 March. Although there was evidence of lower individual-level transmission risk amongst children compared to adults, the combined effects of this with increased contact rates in school settings and the resulting impact on the overall transmission rate in the population were not clear. Methods: We measured social contacts of > 5000 participants weekly from March 2020, including periods when schools were both open and closed, amongst other restrictions. We combined these data with estimates of the susceptibility and infectiousness of children compared with adults to estimate the impact of reopening schools on the reproduction number. Results: Our analysis indicates that reopening all schools under the same measures as previous periods that combined lockdown with face-to-face schooling would be likely to increase the reproduction number substantially. Assuming a baseline of 0.8, we estimated a likely increase to between 1.0 and 1.5 with the reopening of all schools or to between 0.9 and 1.2 reopening primary or secondary schools alone. Conclusion: Our results suggest that reopening schools would likely halt the fall in cases observed between January and March 2021 and would risk a return to rising infections, but these estimates relied heavily on the latest estimates or reproduction number and the validity of the susceptibility and infectiousness profiles we used at the time of reopening
    corecore