8 research outputs found

    Rapid Analysis of Saccharomyces cerevisiae Genome Rearrangements by Multiplex Ligation–Dependent Probe Amplification

    Get PDF
    Aneuploidy and gross chromosomal rearrangements (GCRs) can lead to genetic diseases and the development of cancer. We previously demonstrated that introduction of the repetitive retrotransposon Ty912 onto a nonessential chromosome arm of Saccharomyces cerevisiae led to increased genome instability predominantly due to increased rates of formation of monocentric nonreciprocal translocations. In this study, we adapted Multiplex Ligation–dependent Probe Amplification (MLPA) to analyze a large numbers of these GCRs. Using MLPA, we found that the distribution of translocations induced by the presence of Ty912 in a wild-type strain was nonrandom and that the majority of these translocations were mediated by only six translocation targets on four different chromosomes, even though there were 254 potential Ty-related translocation targets in the S. cerevisiae genome. While the majority of Ty912-mediated translocations resulted from RAD52-dependent recombination, we observed a number of nonreciprocal translocations mediated by RAD52-independent recombination between Ty1 elements. The formation of these RAD52-independent translocations did not require the Rad51 or Rad59 homologous pairing proteins or the Rad1–Rad10 endonuclease complex that processes branched DNAs during recombination. Finally, we found that defects in ASF1-RTT109–dependent acetylation of histone H3 lysine residue 56 (H3K56) resulted in increased accumulation of both GCRs and whole-chromosome duplications, and resulted in aneuploidy that tended to occur simultaneously with GCRs. Overall, we found that MLPA is a versatile technique for the rapid analysis of GCRs and can facilitate the genetic analysis of the pathways that prevent and promote GCRs and aneuploidy

    A Cloud Environment for Data-intensive Storage Services

    No full text
    Abstract — The emergence of cloud environments has made feasible the delivery of Internet-scale services by addressing a number of challenges such as live migration, fault tolerance and quality of service. However, current approaches do not tackle key issues related to cloud storage, which are of increasing importance given the enormous amount of data being produced in today's rich digital environment (e.g. by smart phones, social networks, sensors, user generated content). In this paper we present the architecture of a scalable and flexible cloud environment addressing the challenge of providing data-intensive storage cloud services through raising the abstraction level of storage, enabling data mobility across providers, allowing computational and content-centric access to storage and deploying new data-oriented mechanisms for QoS and security guarantees. We also demonstrate the adde
    corecore