3 research outputs found
Hybrid Polyelectrolyte Capsules Loaded with Gadolinium-Doped Cerium Oxide Nanoparticles as a Biocompatible MRI Agent for Theranostic Applications
Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their unique advantages and capability in drug delivery applications. These ordered micro/nanostructures are also promising candidates as imaging contrast agents for diagnostic and theranostic applications. Magnetic resonance imaging (MRI), one of the most powerful clinical imaging modalities, is moving forward to the molecular imaging field and requires advanced imaging probes. This paper reports on a new design of MRI-visible LbL capsules, loaded with redox-active gadolinium-doped cerium oxide nanoparticles (CeGdO2−x NPs). CeGdO2−x NPs possess an ultrasmall size, high colloidal stability, and pronounced antioxidant properties. A comprehensive analysis of LbL capsules by TEM, SEM, LCSM, and EDX techniques was carried out. The research demonstrated a high level of biocompatibility and cellular uptake efficiency of CeGdO2−x-loaded capsules by cancer (human osteosarcoma and adenocarcinoma) cells and normal (human mesenchymal stem) cells. The LbL-based delivery platform can also be used for other imaging modalities and theranostic applications
The Strong Protective Action of Ce3+/F− Combined Treatment on Tooth Enamel and Epithelial Cells
We studied the toxic effects of cerium and fluoride species on human dental pulp stem cells and epithelial cells of Cercopithecus aethiops as a surrogate for the human oral mucosa. The sequential use of CeCl3 and NH4F solutions in equimolar sub-toxic concentrations enabled the possible toxic effects of individual components to be avoided, ensuring the preservation of the metabolic activity of the cells due to the formation of CeF3 nanoparticles. Cerium fluoride nanoparticles and terbium-doped cerium fluoride nanoparticles exhibited neither cytotoxicity nor genotoxicity to dental pulp stem cells, even at high concentrations (10−4 M). In millimolar concentrations (from 10−5–10−6 M), these nanoparticles significantly increased the expression of genes responsible for the cell cycle, differentiation and proliferation. The formation of cerium fluoride on the surface of the mucous membrane and teeth provided protection against the development of carious lesions, periodontitis, ROS attacks and other inflammatory diseases of the oral cavity. Luminescent CeF3: Tb nanoparticles enabled the visualization of tooth enamel microcracks
Boron Nanoparticle-Enhanced Proton Therapy for Cancer Treatment
Proton therapy is one of the promising radiotherapy modalities for the treatment of deepseated and unresectable tumors, and its efficiency can further be enhanced by using boron-containing substances. Here, we explore the use of elemental boron (B) nanoparticles (NPs) as sensitizers for proton therapy enhancement. Prepared by methods of pulsed laser ablation in water, the used B NPs had a mean size of 50 nm, while a subsequent functionalization of the NPs by polyethylene glycol improved their colloidal stability in buffers. Laser-synthesized B NPs were efficiently absorbed by MNNG/Hos human osteosarcoma cells and did not demonstrate any remarkable toxicity effects up to concentrations of 100 ppm, as followed from the results of the MTT and clonogenic assay tests. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell death under irradiation by a 160.5 MeV proton beam. The irradiation of MNNG/Hos cells at a dose of 3 Gy in the presence of 80 and 100 ppm of B NPs led to a 2-and 2.7-fold decrease in the number of formed cell colonies compared to control samples irradiated in the absence of NPs. The obtained data unambiguously evidenced the effect of a strong proton therapy enhancement mediated by B NPs. We also found that the proton beam irradiation of B NPs leads to the generation of reactive oxygen species (ROS), which evidences a possible involvement of the non-nuclear mechanism of cancer cell death related to oxidative stress. Offering a series of advantages, including a passive targeting option and the possibility of additional theranostic functionalities based on the intrinsic properties of B NPs (e.g., photothermal therapy or neutron boron capture therapy), the proposed concept promises a major advancement in proton beam-based cancer treatment