3,205 research outputs found
DMRG analysis of the SDW-CDW crossover region in the 1D half-filled Hubbard-Holstein model
In order to clarify the physics of the crossover from a spin-density-wave
(SDW) Mott insulator to a charge-density-wave (CDW) Peierls insulator in
one-dimensional (1D) systems, we investigate the Hubbard-Holstein Hamiltonian
at half filling within a density matrix renormalisation group (DMRG) approach.
Determining the spin and charge correlation exponents, the momentum
distribution function, and various excitation gaps, we confirm that an
intervening metallic phase expands the SDW-CDW transition in the weak-coupling
regime.Comment: revised versio
Stochastic optimization of a cold atom experiment using a genetic algorithm
We employ an evolutionary algorithm to automatically optimize different
stages of a cold atom experiment without human intervention. This approach
closes the loop between computer based experimental control systems and
automatic real time analysis and can be applied to a wide range of experimental
situations. The genetic algorithm quickly and reliably converges to the most
performing parameter set independent of the starting population. Especially in
many-dimensional or connected parameter spaces the automatic optimization
outperforms a manual search.Comment: 4 pages, 3 figure
A randomised controlled trial of ion-exchange water softeners for the treatment of eczema in children
Epidemiological studies and anecdotal reports suggest a possible link between household use of hard water and atopic eczema. We sought to test whether installation of an ion-exchange water softener in the home can improve eczema in children
Aspects of the FM Kondo Model: From Unbiased MC Simulations to Back-of-an-Envelope Explanations
Effective models are derived from the ferromagnetic Kondo lattice model with
classical corespins, which greatly reduce the numerical effort. Results for
these models are presented. They indicate that double exchange gives the
correct order of magnitude and the correct doping dependence of the Curie
temperature. Furthermore, we find that the jump in the particle density
previously interpreted as phase separation is rather explained by ferromagnetic
polarons.Comment: Proceedings of Wandlitz Days of Magnetism 200
The Anomalous Infrared Emission of Abell 58
We present a new model to explain the excess in mid and near infrared
emission of the central, hydrogen poor dust knot in the planetary nebula (PN)
Abell 58. Current models disagree with ISO measurement because they apply an
average grain size and equilibrium conditions only. We investigate grain size
distributions and temperature fluctuations affecting infrared emission using a
new radiative transfer code and discuss in detail the conditions requiring an
extension of the classical description. The peculiar infrared emission of V605
Aql, the central dust knot in Abell 58, has been modeled with our code. V605
Aql is of special interest as it is one of only three stars ever observed to
move from the evolutionary track of a central PN star back to the post-AGB
state.Comment: 17 pages, 4 figures; accepted and to be published in Ap
Two-point phase correlations of a one-dimensional bosonic Josephson junction
We realize a one-dimensional Josephson junction using quantum degenerate Bose
gases in a tunable double well potential on an atom chip. Matter wave
interferometry gives direct access to the relative phase field, which reflects
the interplay of thermally driven fluctuations and phase locking due to
tunneling. The thermal equilibrium state is characterized by probing the full
statistical distribution function of the two-point phase correlation.
Comparison to a stochastic model allows to measure the coupling strength and
temperature and hence a full characterization of the system
- …