4 research outputs found

    High-altitude characterization of the Hunga pressure wave with cosmic rays by the HAWC observatory

    No full text
    High-energy cosmic rays that hit the Earth can be used to study large-scale atmospheric perturbations. After a first interaction in the upper parts of the atmosphere, cosmic rays produce a shower of particles that sample it down to the detector level. The HAWC (High-Altitude Water Cherenkov) gamma-ray observatory in Central Mexico at 4,100 m elevation detects air shower particles continuously with 300 water Cherenkov detectors with an active area of 12,500 m2. On January 15th, 2022, HAWC detected the passage of the pressure wave created by the explosion of the Hunga volcano in the Tonga islands, 9,000 km away, as an anomaly in the measured rate of shower particles. The HAWC measurements are used to determine the propagation speed of four pressure wave passages, and correlate the variations of the shower particle rates with the barometric pressure changes. The profile of the shower particle rate and atmospheric pressure variations for the first transit of the pressure wave at HAWC is compared to the pressure measurements at the Tonga island, near the volcanic explosion. By using the cosmic-ray propagation in the atmosphere as a probe for the pressure, it is possible to achieve very high time-resolution measurements. Moreover, the high-altitude data from HAWC allows to observe the shape of the pressure anomaly with less perturbations compared to sea level detectors. Given the particular location and the detection method of HAWC, our high-altitude data provides valuable information that contributes to fully characterize this once-in-a-century phenomenon

    HAWC and Fermi-LAT detection of extended emission from the unidentified source 2HWC J2006+341

    No full text
    The discovery of the TeV point source 2HWC J2006+341 was reported in the second HAWC gamma-ray catalog. We present a follow-up study of this source here. The TeV emission is best described by an extended source with a soft spectrum. At GeV energies, an extended source is significantly detected in Fermi-LAT data. The matching locations, sizes, and spectra suggest that both gamma-ray detections correspond to the same source. Different scenarios for the origin of the emission are considered and we rule out an association to the pulsar PSR J2004+3429 due to extreme energetics required, if located at a distance of 10.8 kpc.Universidad de Costa Rica/[112-B9-171]/UCR/Costa RicaUniversidad de Costa Rica/[112-B6-509]/UCR/Costa RicaUniversidad de Costa Rica/[829-B5-198]/UCR/Costa RicaUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físic

    The High-Altitude water cherenkov (HAWC) observatory in México: The primary detector

    No full text
    The High-Altitude Water Cherenkov (HAWC) observatory is a second-generation continuously operated, wide field-of-view, TeV gamma-ray observatory. The HAWC observatory and its analysis techniques build on experience of the Milagro experiment in using ground-based water Cherenkov detectors for gamma-ray astronomy. HAWC is located on the Sierra Negra volcano in México at an elevation of 4100 meters above sea level. The completed HAWC observatory principal detector (HAWC) consists of 300 closely spaced water Cherenkov detectors, each equipped with four photomultiplier tubes to provide timing and charge information to reconstruct the extensive air shower energy and arrival direction. The HAWC observatory has been optimized to observe transient and steady emission from sources of gamma rays within an energy range from several hundred GeV to several hundred TeV. However, most of the air showers detected are initiated by cosmic rays, allowing studies of cosmic rays also to be performed. This paper describes the characteristics of the HAWC main array and its hardware.UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físic

    Combined dark matter searches towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS

    No full text
    Cosmological and astrophysical observations suggest that 85\% of the total matter of the Universe is made of Dark Matter (DM). However, its nature remains one of the most challenging and fundamental open questions of particle physics. Assuming particle DM, this exotic form of matter cannot consist of Standard Model (SM) particles. Many models have been developed to attempt unraveling the nature of DM such as Weakly Interacting Massive Particles (WIMPs), the most favored particle candidates. WIMP annihilations and decay could produce SM particles which in turn hadronize and decay to give SM secondaries such as high energy γ\gamma rays. In the framework of indirect DM search, observations of promising targets are used to search for signatures of DM annihilation. Among these, the dwarf spheroidal galaxies (dSphs) are commonly favored owing to their expected high DM content and negligible astrophysical background. In this work, we present the very first combination of 20 dSph observations, performed by the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations in order to maximize the sensitivity of DM searches and improve the current results. We use a joint maximum likelihood approach combining each experiment's individual analysis to derive more constraining upper limits on the WIMP DM self-annihilation cross-section as a function of DM particle mass. We present new DM constraints over the widest mass range ever reported, extending from 5 GeV to 100 TeV thanks to the combination of these five different γ\gamma-ray instruments
    corecore