9 research outputs found

    Hypothermic Oxygenated Machine Perfusion (HOPE) Prior to Liver Transplantation Mitigates Post-Reperfusion Syndrome and Perioperative Electrolyte Shifts

    Get PDF
    (1) Background: Post-reperfusion syndrome (PRS) and electrolyte shifts (ES) represent considerable challenges during liver transplantation (LT) being associated with significant morbidity. We aimed to investigate the impact of hypothermic oxygenated machine perfusion (HOPE) on PRS and ES in LT. (2) Methods: In this retrospective study, we compared intraoperative parameters of 100 LTs, with 50 HOPE preconditioned liver grafts and 50 grafts stored in static cold storage (SCS). During reperfusion phase, prospectively registered serum parameters and vasopressor administration were analyzed. (3) Results: Twelve percent of patients developed PRS in the HOPE cohort vs. 42% in the SCS group (p = 0.0013). Total vasopressor demand in the first hour after reperfusion was lower after HOPE pretreatment, with reduced usage of norepinephrine (-26%;p = 0.122) and significant reduction of epinephrine consumption (-52%;p = 0.018). Serum potassium concentration dropped by a mean of 14.1% in transplantations after HOPE, compared to a slight decrease of 1% (p < 0.001) after SCS. The overall incidence of early allograft dysfunction (EAD) was reduced by 44% in the HOPE group (p = 0.04). (4) Conclusions: Pre-transplant graft preconditioning with HOPE results in higher hemodynamic stability during reperfusion and lower incidence of PRS and EAD. HOPE has the potential to mitigate ES by preventing hyperpotassemic complications that need to be addressed in LT with HOPE-pre-treated grafts

    The Role of Gut-Derived Lipopolysaccharides and the Intestinal Barrier in Fatty Liver Diseases

    Get PDF
    BACKGROUND Hepatosteatosis is the earliest stage in the pathogenesis of nonalcoholic fatty (NAFLD) and alcoholic liver disease (ALD). As NAFLD is affecting 10-24% of the general population and approximately 70% of obese patients, it carries a large economic burden and is becoming a major reason for liver transplantation worldwide. ALD is a major cause of morbidity and mortality causing 50% of liver cirrhosis and 10% of liver cancer related death. Increasing evidence has accumulated that gut-derived factors play a crucial role in the development and progression of chronic liver diseases. METHODS A selective literature search was conducted in Medline and PubMed, using the terms \textquotedblnonalcoholic fatty liver disease,\textquotedbl \textquotedblalcoholic liver disease,\textquotedbl \textquotedbllipopolysaccharide,\textquotedbl \textquotedblgut barrier,\textquotedbl and \textquotedblmicrobiome.\textquotedbl RESULTS Gut dysbiosis and gut barrier dysfunction both contribute to chronic liver disease by abnormal regulation of the gut-liver axis. Thereby, gut-derived lipopolysaccharides (LPS) are a key factor in inducing the inflammatory response of liver tissue. The review further underlines that endotoxemia is observed in both NAFLD and ALD patients. LPS plays an important role in conducting liver damage through the LPS-TLR4 signaling pathway. Treatments targeting the gut microbiome and the gut barrier such as fecal microbiota transplantation (FMT), probiotics, prebiotics, synbiotics, and intestinal alkaline phosphatase (IAP) represent potential treatment modalities for NAFLD and ALD. CONCLUSIONS The gut-liver axis plays an important role in the development of liver disease. Treatments targeting the gut microbiome and the gut barrier have shown beneficial effects in attenuating liver inflammation and need to be further investigated

    A Novel Deep Learning Model as a Donor-Recipient Matching Tool to Predict Survival after Liver Transplantation

    Get PDF
    Background: The digital era in the field of medicine is the new here and now. Artificial intelligence has entered many fields of medicine and is recently emerging in the field of organ transplantation. Solid organs remain a scarce resource. Being able to predict the outcome after liver transplantation promises to solve one of the long-standing problems within organ transplantation. What is the perfect donor recipient match? Within this work we developed and validated a novel deep-learning-based donor-recipient allocation system for liver transplantation. Method: In this study we used data collected from all liver transplant patients between 2004 and 2019 at the university transplantation centre in Munich. We aimed to design a transparent and interpretable deep learning framework to predict the outcome after liver transplantation. An individually designed neural network was developed to meet the unique requirements of transplantation data. The metrics used to determine the model quality and its level of performance are accuracy, cross-entropy loss, and F1 score as well as AUC score. Results: A total of 529 transplantations with a total of 1058 matching donor and recipient observations were added into the database. The combined prediction of all outcome parameters was 95.8% accurate (cross-entropy loss of 0.042). The prediction of death within the hospital was 94.3% accurate (cross-entropy loss of 0.057). The overall F1 score was 0.899 on average, whereas the overall AUC score was 0.940. Conclusion: With the achieved results, the network serves as a reliable tool to predict survival. It adds new insight into the potential of deep learning to assist medical decisions. Especially in the field of transplantation, an AUC Score of 94% is very valuable. This neuronal network is unique as it utilizes transparent and easily interpretable data to predict the outcome after liver transplantation. Further validation must be performed prior to utilization in a clinical context

    Highly differential count of circulating and tumor infiltrating immune cells in patients with non-HCV/non-HBV hepatocellular carcinoma

    Get PDF
    BACKGROUND Liver transplantation and liver resection are curative options for early hepatocellular carcinoma (HCC). The outcome is in part depended on the immunological response to the malignancy. In this study, we aimed to identify immunological profiles of non-HCV/non-HBV HCC patients. METHODS Thirty-nine immune cell subsets were measured with multicolor flow cytometry. This immunophenotyping was performed in peripheral blood (PB) and tumor specimens of 10 HCC resection patients and 10 healthy donors. The signatures of the highly differential leukocyte count (hDIF) were analyzed using multidimensional techniques. Functional capability was measured using intracellular IFN-Îł staining (Trial Registration DRKS00013567). RESULTS The hDIF showed activation (subsets of T-, B-, NK- and dendritic cells) and suppression (subsets of myeloid-derived suppressor cells and T- and B-regulatory cells) of the antitumor response. Principal component analysis of PB and tumor infiltrating leukocytes (TIL) illustrated an antitumor activating gradient. TILs showed functional capability by secreting IFN-Îł but did not kill HCC cells. CONCLUSIONS In conclusion, the measurement of the hDIF shows distinct differences in immune reactions against non-HBV/non-HCV HCC and illustrates an immunosuppressive gradient toward peripheral blood. TRIAL REGISTRATION DRKS00013567

    Metabolic Role of Autophagy in the Pathogenesis and Development of NAFLD

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disease, ranging from simple steatosis to hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Liver fibrosis, which portends a poor prognosis in NAFLD, is characterized by the excessive accumulation of extracellular matrix (ECM) proteins resulting from abnormal wound repair response and metabolic disorders. Various metabolic factors play crucial roles in the progression of NAFLD, including abnormal lipid, bile acid, and endotoxin metabolism, leading to chronic inflammation and hepatic stellate cell (HSC) activation. Autophagy is a conserved process within cells that removes unnecessary or dysfunctional components through a lysosome-dependent regulated mechanism. Accumulating evidence has shown the importance of autophagy in NAFLD and its close relation to NAFLD progression. Thus, regulation of autophagy appears to be beneficial in treating NAFLD and could become an important therapeutic target

    Frequent Follow-Up of Delisted Liver Transplant Candidates Is Necessary: An Observational Study about Characteristics and Outcomes of Delisted Liver Transplant Candidates

    No full text
    This observational study focuses on the characteristics and survival of patients taken off of the liver transplant waiting list. Assessment of post-delisting survival and a frequent follow-up of patients after delisting are important keys to improve the survival rate of patients with liver failure after being delisted. Within this study, delisted liver transplant candidates were divided into the following groups: (1) “too good” (54%) or (2) “too sick” (22%) for transplantation, (3) adherence issues (12%) or (4) therapy goal changed (11%). The 5-year survival after delisting within these groups was 84%, 9%, 50%, and 68%, respectively. Less than 3% of the delisted patients had to be relisted again. The clinical expert decision of the multidisciplinary transplant team was sufficiently accurate to differentiate between patients requiring liver transplantation and those who were delisted after a stable recovery of liver function. The assessment of post-delisting survival may serve as a complementary metric to assess differences in center practices and to estimate cumulative post-delisting mortality risk

    Tigecycline causes loss of cell viability mediated by mitochondrial OXPHOS and RAC1 in hepatocellular carcinoma cells

    No full text
    Abstract Background Despite recent advances in locoregional, systemic, and novel checkpoint inhibitor treatment, hepatocellular carcinoma (HCC) is still associated with poor prognosis. The feasibility of potentially curative liver resection (LR) and transplantation (LT) is limited by the underlying liver disease and a shortage of organ donors. Especially after LR, high recurrence rates present a problem and circulating tumor cells are a major cause of extrahepatic recurrence. Tigecycline, a commonly used glycylcycline antibiotic, has been shown to have antitumorigenic effects and could be used as a perioperative and adjuvant therapeutic strategy to target circulating tumor cells. We aimed to investigate the effect of tigecycline on HCC cell lines and its mechanisms of action. Methods Huh7, HepG2, Hep3B, and immortalized hepatocytes underwent incubation with clinically relevant tigecycline concentrations, and the influence on proliferation, migration, and invasion was assessed in two- and three-dimensional in vitro assays, respectively. Bioinformatic analysis was used to identify specific targets of tigecycline. The expression of RAC1 was detected using western blot, RT-PCR and RNA sequencing. ELISA and flow cytometry were utilized to measure reactive oxygen species (ROS) generation upon tigecycline treatment and flow cytometry to detect alterations in cell cycle. Changes in mitochondrial function were detected via seahorse analysis. RNA sequencing was performed to examine involved pathways. Results Tigecycline treatment resulted in a significant reduction of mitochondrial function with concomitantly preserved mitochondrial size, which preceded the observed decrease in HCC cell viability. The sensitivity of HCC cells to tigecycline treatment was higher than that of immortalized non-cancerous THLE-2 hepatocytes. Tigecycline inhibited both migratory and invasive properties. Tigecycline application led to an increase of detected ROS and an S-phase cell cycle arrest. Bioinformatic analysis identified RAC1 as a likely target for tigecycline and the expression of this molecule was increased in HCC cells as a result of tigecycline treatment. Conclusion Our study provides evidence for the antiproliferative effect of tigecycline in HCC. We show for the first time that this effect, likely to be mediated by reduced mitochondrial function, is associated with increased expression of RAC1. The reported effects of tigecycline with clinically relevant and achievable doses on HCC cells lay the groundwork for a conceivable use of this agent in cancer treatment

    Prolonged preservation by hypothermic machine perfusion facilitates logistics in liver transplantation: a European observational cohort study

    Get PDF
    A short period (1-2 hours) of hypothermic oxygenated machine perfusion (HOPE) after static cold storage is safe and reduces ischemia-reperfusion injury-related complications after liver transplantation. Machine perfusion time is occasionally prolonged for logistical reasons, but it is unknown if prolonged HOPE is safe and compromises outcomes. We conducted a multicenter, observational cohort study of patients transplanted with a liver preserved by prolonged (≄4 hours) HOPE. Postoperative biochemistry, complications, and survival were evaluated. The cohort included 93 recipients from 12 European transplant centers between 2014-2021. The most common reason to prolong HOPE was the lack of an available operating room to start the transplant procedure. Grafts underwent HOPE for a median (range) of 4:42h (4:00-8:35h) with a total preservation time of 10:50h (5:50h-20:50h). Postoperative peak ALT was 675 IU/L (interquartile range 419-1378 IU/L). The incidence of postoperative complications was low, and 1-year graft and patient survival were 94%, and 88%, respectively. To conclude, good outcomes are achieved after transplantation of donor livers preserved with prolonged (median 4:42 hours) HOPE, leading to a total preservation time of almost 21 hours. These results suggest that simple, end-ischemic HOPE may be utilized for safe extension of the preservation time to ease transplantation logistics
    corecore