224 research outputs found

    Virtual Frame Technique: Ultrafast Imaging with Any Camera

    Full text link
    Many phenomena of interest in nature and industry occur rapidly and are difficult and cost-prohibitive to visualize properly without specialized cameras. Here we describe in detail the Virtual Frame Technique (VFT), a simple, useful, and accessible form of compressed sensing that increases the frame acquisition rate of any camera by several orders of magnitude by leveraging its dynamic range. VFT is a powerful tool for capturing rapid phenomenon where the dynamics facilitate a transition between two states, and are thus binary. The advantages of VFT are demonstrated by examining such dynamics in five physical processes at unprecedented rates and spatial resolution: fracture of an elastic solid, wetting of a solid surface, rapid fingerprint reading, peeling of adhesive tape, and impact of an elastic hemisphere on a hard surface. We show that the performance of the VFT exceeds that of any commercial high speed camera not only in rate of imaging but also in field of view, achieving a 65MHz frame rate at 4MPx resolution. Finally, we discuss the performance of the VFT with several commercially available conventional and high-speed cameras. In principle, modern cell phones can achieve imaging rates of over a million frames per second using the VFT.Comment: 7 Pages, 4 Figures, 1 Supplementary Vide

    Superspreading events suggest aerosol transmission of SARS-CoV-2 by accumulation in enclosed spaces

    Full text link
    Viral transmission pathways have profound implications for public safety; it is thus imperative to establish a complete understanding of viable infectious avenues. Mounting evidence suggests SARS-CoV-2 can be transmitted via the air; however, this has not yet been demonstrated. Here we quantitatively analyze virion accumulation by accounting for aerosolized virion emission and destabilization. Reported superspreading events analyzed within this framework point towards aerosol mediated transmission of SARS-CoV-2. Virion exposure calculated for these events is found to trace out a single value, suggesting a universal minimum infective dose (MID) via aerosol that is comparable to the MIDs measured for other respiratory viruses; thus, the consistent infectious exposure levels and their commensurability to known aerosol-MIDs establishes the plausibility of aerosol transmission of SARS-CoV-2. Using filtration at a rate exceeding the destabilization rate of aerosolized SARS-CoV-2 can reduce exposure below this infective dose.Comment: 6 pages, 4 figure

    Skating on a Film of Air: Drops Impacting on a Surface

    Full text link
    Drops impacting on a surface are ubiquitous in our everyday experience. This impact is understood within a commonly accepted hydrodynamic picture: it is initiated by a rapid shock and a subsequent ejection of a sheet leading to beautiful splashing patterns. However, this picture ignores the essential role of the air that is trapped between the impacting drop and the surface. Here we describe a new imaging modality that is sensitive to the behavior right at the surface. We show that a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the drop spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate on the air film laterally outward at surprisingly high velocities, consistent with theoretical predictions. Eventually this thin film of air must break down as the fluid wets the surface. We suggest that this occurs in a spinodal-like fashion, and causes a very rapid spreading of a wetting front outwards; simultaneously the wetting fluid spreads inward much more slowly, trapping a bubble of air within the drop. Our results show that the dynamics of impacting drops are much more complex than previously thought and exhibit a rich array of unexpected phenomena that require rethinking classical paradigms.Comment: 4 pages, 4 figure

    Chirality and Protein Folding

    Full text link
    There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the RMSD distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favors native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as with the side groups and with the angle-dependent potentials.Comment: To be published in a special issue of J. Phys.: Cond. Mat. (Bedlewo Workshop

    Topological effects in ring polymers: A computer simulation study

    Full text link
    Unconcatenated, unknotted polymer rings in the melt are subject to strong interactions with neighboring chains due to the presence of topological constraints. We study this by computer simulation using the bond-fluctuation algorithm for chains with up to N=512 statistical segments at a volume fraction \Phi=0.5 and show that rings in the melt are more compact than gaussian chains. A careful finite size analysis of the average ring size R \propto N^{\nu} yields an exponent \nu \approx 0.39 \pm 0.03 in agreement with a Flory-like argument for the topologica interactions. We show (using the same algorithm) that the dynamics of molten rings is similar to that of linear chains of the same mass, confirming recent experimental findings. The diffusion constant varies effectively as D_{N} \propto N^{-1.22(3) and is slightly higher than that of corresponding linear chains. For the ring sizes considered (up to 256 statistical segments) we find only one characteristic time scale \tau_{ee} \propto N^{2.0(2); this is shown by the collapse of several mean-square displacements and correlation functions onto corresponding master curves. Because of the shrunken state of the chain, this scaling is not compatible with simple Rouse motion. It applies for all sizes of ring studied and no sign of a crossover to any entangled regime is found.Comment: 20 Pages,11 eps figures, Late

    How super-tough gels break

    Full text link
    Fracture of highly stretched materials challenges our view of how things break. We directly visualize rupture of tough double-network (DN) gels at >50\% strain. During fracture, crack tip shapes obey a x∼y1.6x\sim y^{1.6} power-law, in contrast to the parabolic profile observed in low-strain cracks. A new length-scale ℓ\ell emerges from the power-law; we show that ℓ\ell scales directly with the stored elastic energy, and diverges when the crack velocity approaches the shear wave speed. Our results show that DN gels undergo brittle fracture, and provide a testing ground for large-strain fracture mechanics

    Phase Transitions of Single Semi-stiff Polymer Chains

    Full text link
    We study numerically a lattice model of semiflexible homopolymers with nearest neighbor attraction and energetic preference for straight joints between bonded monomers. For this we use a new algorithm, the "Pruned-Enriched Rosenbluth Method" (PERM). It is very efficient both for relatively open configurations at high temperatures and for compact and frozen-in low-T states. This allows us to study in detail the phase diagram as a function of nn-attraction epsilon and stiffness x. It shows a theta-collapse line with a transition from open coils to molten compact globules (large epsilon) and a freezing transition toward a state with orientational global order (large stiffness x). Qualitatively this is similar to a recently studied mean field theory (Doniach et al. (1996), J. Chem. Phys. 105, 1601), but there are important differences. In contrast to the mean field theory, the theta-temperature increases with stiffness x. The freezing temperature increases even faster, and reaches the theta-line at a finite value of x. For even stiffer chains, the freezing transition takes place directly without the formation of an intermediate globule state. Although being in contrast with mean filed theory, the latter has been conjectured already by Doniach et al. on the basis of low statistics Monte Carlo simulations. Finally, we discuss the relevance of the present model as a very crude model for protein folding.Comment: 11 pages, Latex, 8 figure

    Cooperative Dynamics in Unentangled Polymer Fluids

    Full text link
    We present a Generalized Langevin Equation for the dynamics of interacting semiflexible polymer chains, undergoing slow cooperative dynamics. The calculated Gaussian intermolecular center-of-mass and monomer potentials, wich enter the GLE, are in quantitative agreement with computer simulation data. The experimentally observed, short-time subdiffusive regime of the polymer mean-square displacements, emerges here from the competition between the intramolecular and the intermolecular mean-force potentials.Comment: 9 pages, latex, 3 figure
    • …
    corecore