25 research outputs found

    Immune dysregulation as a leading principle for lymphoma development in diverse immunological backgrounds

    Get PDF
    Lymphoma is a heterogeneous group of malignancies arising from lymphocytes, which poses a significant challenge in terms of diagnosis and treatment due to its diverse subtypes and underlying mechanisms. This review aims to explore the shared and distinct features of various forms of lymphoma predisposing conditions, with a focus on genetic, immunological and molecular aspects. While diseases such as autoimmune disorders, inborn errors of immunity and iatrogenic immunodeficiencies are biologically and immunologically distinct, each of these diseases results in profound immune dysregulation and a predisposition to lymphoma development. Interestingly, the increased risk is often skewed towards a particular subtype of lymphoma. Patients with inborn errors of immunity in particular present with extreme forms of lymphoma predisposition, providing a unique opportunity to study the underlying mechanisms. External factors such as chronic infections and environmental exposures further modulate the risk of lymphoma development. Common features of conditions predisposing to lymphoma include: persistent inflammation, recurrent DNA damage or malfunctioning DNA repair, impaired tumor surveillance and viral clearance, and dysregulation of fundamental cellular processes such as activation, proliferation and apoptosis. Our growing understanding of the underlying mechanisms of lymphomagenesis provides opportunities for early detection, prevention and tailored treatment of lymphoma development.</p

    Potential Biomarkers for Noninfectious Scleritis Identified by Serum and Tear Fluid Proteomics

    Get PDF
    Purpose: Scleritis is an extremely painful and potentially blinding inflammation of the sclera with unknown pathogenesis and unpredictable course. To gain insight in its disease process and identify biomarker candidates, we performed extensive proteomics in serum and tear fluid. Design: Prospective multicenter cohort study. Participants: A total of 121 patients with noninfectious scleritis (of which 39 active cases), 30 healthy controls, and 23 disease controls (uveitis and rheumatoid arthritis) were enrolled in the Netherlands from 2020 to 2022. Methods: Serum, tear fluid of both eyes, and clinical data were gathered. The level of 368 inflammatory proteins was measured using proximity extension assays. Results were validated in an independent cohort of 15 patients with scleritis, and using addressable laser bead immunoassay, or enzyme-linked immunoassays. In addition, we studied an extended panel of matrix metalloproteinases in tear fluid of necrotizing scleritis with addressable laser bead immunoassay. Main Outcome Measures: Statistically significant differences in the level of inflammatory proteins between patients with scleritis and control groups.Results:Proteomics revealed 18 significantly upregulated or downregulated serum proteins in active scleritis cases compared with all control groups in both the discovery cohort and the validation cohort. The most upregulated protein was nuclear migration protein nudC (NudC; P = 0.0032), a protein involved in neurogenesis. The other significant hits included proteins involved in T-cell activation, apoptosis, epithelial barrier maintenance, and angiogenesis. Our tear fluid analysis showed matrix metalloproteinase 9 (MMP9) to be upregulated in the tear fluid of patients with scleral necrosis. Conclusions: The results of our proteomics analysis suggest a role for neurogenesis, T-cell activation, disruption of epithelial barrier, and angiogenesis in the pathogenesis of scleritis, and highlight MMP9 and NudC as biomarkers with potential clinical relevance. </p

    High-throughput Proteomics Identifies THEMIS2 as Independent Biomarker of Treatment-free Survival in Untreated CLL

    Get PDF
    It remains challenging in chronic lymphocytic leukemia (CLL) to distinguish between patients with favorable and unfavorable time-to-first treatment (TTFT). Additionally, the downstream protein correlates of well-known molecular features of CLL are not always clear. To address this, we selected 40 CLL patients with TTFT ≤24 months and compared their B cell intracellular protein expression with 40 age- and sex-matched CLL patients with TTFT &gt;24 months using mass spectrometry. In total, 3268 proteins were quantified in the cohort. Immunoglobulin heavy-chain variable (IGHV) mutational status and trisomy 12 were most impactful on the CLL proteome. Comparing cases to controls, 5 proteins were significantly upregulated, whereas 3 proteins were significantly downregulated. Of these, only THEMIS2, a signaling protein acting downstream of the B cell receptor, was significantly associated with TTFT, independently of IGHV and TP53 mutational status (hazard ratio, 2.49 [95% confidence interval, 1.62-3.84]; P &lt; 0.001). This association was validated on the mRNA and protein level by quantitative polymerase chain reaction and ELISA, respectively. Analysis of 2 independently generated RNA sequencing and mass spectrometry datasets confirmed the association between THEMIS2 expression and clinical outcome. In conclusion, we present a comprehensive characterization of the proteome of untreated CLL and identify THEMIS2 expression as a putative biomarker of TTFT.</p

    Genetic drivers in the natural history of chronic lymphocytic leukemia development as early as 16 years before diagnosis

    Get PDF
    Chronic lymphocytic leukemia (CLL) is preceded by monoclonal B-cell lymphocytosis (MBL), a potential CLL precursor state which can be detected in up to 17% in aged individuals. Recently, we described significant B-cell receptor immunoglobulin heavy chain (BCR IGH) gene repertoire skewing and clonotypic evolution up to 22 years before CLL diagnosis. However, pathobiological drivers during the earliest stages of MBL development remain incompletely characterized. In this study, we utilized the EuroClonality-NDC panel to sequence recurrently mutated genes in CLL in 39 peripheral blood samples from 16 CLL patients sampled up to 16 years prior to diagnosis. CLL diagnosis ranged from 5 months to 16 years after first blood sampling. Of 16 CLL patients, 8 (50%) presented with variants of interest in genes recurrently mutated in CLL such as NOTCH1, ATM, and SF3B1 . ATM variants and the IGLV3-21R110 mutation were present from the early stages of (pre)MBL development, while NOTCH1, SF3B1, and XPO1 variants arose closer to diagnosis. We additionally detected variants in FAT1 and PLCG2 as early as 10 years prior to CLL diagnosis. Overall, our data shows specific genetic drivers of CLL are associated with early and late stages of CLL development

    Potential Biomarkers for Noninfectious Scleritis Identified by Serum and Tear Fluid Proteomics

    Get PDF
    Purpose: Scleritis is an extremely painful and potentially blinding inflammation of the sclera with unknown pathogenesis and unpredictable course. To gain insight in its disease process and identify biomarker candidates, we performed extensive proteomics in serum and tear fluid. Design: Prospective multicenter cohort study. Participants: A total of 121 patients with noninfectious scleritis (of which 39 active cases), 30 healthy controls, and 23 disease controls (uveitis and rheumatoid arthritis) were enrolled in the Netherlands from 2020 to 2022. Methods: Serum, tear fluid of both eyes, and clinical data were gathered. The level of 368 inflammatory proteins was measured using proximity extension assays. Results were validated in an independent cohort of 15 patients with scleritis, and using addressable laser bead immunoassay, or enzyme-linked immunoassays. In addition, we studied an extended panel of matrix metalloproteinases in tear fluid of necrotizing scleritis with addressable laser bead immunoassay. Main Outcome Measures: Statistically significant differences in the level of inflammatory proteins between patients with scleritis and control groups. Results: Proteomics revealed 18 significantly upregulated or downregulated serum proteins in active scleritis cases compared with all control groups in both the discovery cohort and the validation cohort. The most upregulated protein was nuclear migration protein nudC (NudC; P = 0.0032), a protein involved in neurogenesis. The other significant hits included proteins involved in T-cell activation, apoptosis, epithelial barrier maintenance, and angiogenesis. Our tear fluid analysis showed matrix metalloproteinase 9 (MMP9) to be upregulated in the tear fluid of patients with scleral necrosis. Conclusions: The results of our proteomics analysis suggest a role for neurogenesis, T-cell activation, disruption of epithelial barrier, and angiogenesis in the pathogenesis of scleritis, and highlight MMP9 and NudC as biomarkers with potential clinical relevance. Funding Disclosure(s): The authors have no proprietary or commercial interest in any materials discussed in this article

    High-risk subtypes of chronic lymphocytic leukemia are detectable as early as 16 years prior to diagnosis

    Get PDF
    Chronic lymphocytic leukemia (CLL) is preceded by monoclonal B-cell lymphocytosis (MBL), a CLL precursor state with a prevalence of up to 12% in aged individuals; however, the duration of MBL and the mechanisms of its evolution to CLL remain largely unknown. In this study, we sequenced the B-cell receptor (BcR) immunoglobulin heavy chain (IGH) gene repertoire of 124 patients with CLL and 118 matched controls in blood samples taken up to 22 years prior to diagnosis. Significant skewing in the BcR IGH gene repertoire was detected in the majority of patients, even before the occurrence of lymphocytosis and irrespective of the clonotypic IGH variable gene somatic hypermutation status. Furthermore, we identified dominant clonotypes belonging to major stereotyped subsets associated with poor prognosis up to 16 years before diagnosis in 14 patients with CLL. In 22 patients with longitudinal samples, the skewing of the BcR IGH gene repertoire increased significantly over time to diagnosis or remained stable at high levels. For 14 of 16 patients with available samples at diagnosis, the CLL clonotype was already present in the prediagnostic samples. Overall, our data indicate that the preclinical phase of CLL could be longer than previously thought, even in adverse-prognostic cases

    Local actin dynamics couple speed and persistence in a cellular Potts model of cell migration

    No full text
    Cell migration is astoundingly diverse. Molecular signatures, cell-cell interactions, and environmental structures each play their part in shaping cell motion, yielding numerous morphologies and migration modes. Nevertheless, in recent years, a simple unifying law was found to describe cell migration across many different cell types and contexts: faster cells turn less frequently. This universal coupling between speed and persistence (UCSP) was explained by retrograde actin flow from front to back, but it remains unclear how this mechanism generalizes to cells with complex shapes and cells migrating in structured environments, which may not have a well-defined front-to-back orientation. Here, we present an in-depth characterization of an existing cellular Potts model, in which cells polarize dynamically from a combination of local actin dynamics (stimulating protrusions) and global membrane tension along the perimeter (inhibiting protrusions). We first show that the UCSP emerges spontaneously in this model through a cross talk of intracellular mechanisms, cell shape, and environmental constraints, resembling the dynamic nature of cell migration in vivo. Importantly, we find that local protrusion dynamics suffice to reproduce the UCSP—even in cases in which no clear global, front-to-back polarity exists. We then harness the spatial nature of the cellular Potts model to show how cell shape dynamics limit both the speed and persistence a cell can reach and how a rigid environment such as the skin can restrict cell motility even further. Our results broaden the range of potential mechanisms underlying the speed-persistence coupling that has emerged as a fundamental property of migrating cells
    corecore