149 research outputs found

    Dysregulated placental microRNAs in Early and Late onset Preeclampsia

    Get PDF
    Copyright © 2017. Published by Elsevier Ltd.INTRODUCTION: To determine the miRNA expression profile in placentas complicated by Preeclampsia (PE) and compare it to uncomplicated pregnancies. METHODS: Sixteen placentas from women with PE, [11 with early onset PE (EOPE) and 5 with late onset PE (LOPE)], as well as 8 placentas from uncomplicated pregnancies were analyzed using miRNA microarrays. For statistical analyses the MATLAB® simulation environment was applied. The over-expression of miR-518a-5p was verified using Quantitative Real-Time Polymerase Chain Reaction. RESULTS: Forty four miRNAs were found dysregulated in PE complicated placentas. Statistical analysis revealed that miR-431, miR-518a-5p and miR-124* were over-expressed in EOPE complicated placentas as compared to controls, whereas miR-544 and miR-3942 were down-regulated in EOPE. When comparing the miRNA expression profile in cases with PE and PE-growth restricted fetuses (FGR), miR-431 and miR-518a-5p were found over-expressed in pregnancies complicated by FGR. DISCUSSION: Since specific miRNAs can differentiate EOPE and LOPE from uncomplicated placentas, they may be considered as putative PE-specific biomarkers. MiR-518a-5p emerged as a potential diagnostic indicator for EOPE cases as well as for PE-FGR complicated placentas, indicating a potential link to the severity of the disease.Peer reviewe

    Diagnosis of Fanconi Anaemia (FA) in dizygotic twins

    Get PDF
    In this study we report on a case of FA in dizygotic twins with characteristic congenital abnormalities and the same deletions of the FANCA gene

    Investigation of FANCA mutations in greek patients

    Get PDF
    Background: Fanconi anemia (FA) is a rare genetic disease characterized by considerable heterogeneity. Fifteen subtypes are currently recognised and deletions of the Fanconi anemia complementation group A (FANCA) gene account for more than 65% of FA cases. We report on the results from a cohort of 166 patients referred to the Department of Medical Genetics of Athens University for genetic investigation after the clinical suspicion of FA. Materials and Methods: For clastogen-induced chromosome damage, cultures were set up with the addition of mitomycin C (MMC) and diepoxybutane (DEB), respectively. Following a positive cytogenetic result, molecular analysis was performed to allow identification of causative mutations in the FANCA gene. Results: A total of 13/166 patients were diagnosed with FA and 8/13 belonged to the FA-A subtype. A novel point mutation was identified in exon 26 of FANCA gene. Conclusion: In our study 62% of FA patients were classified in the FA-A subtype and a point mutation in exon 26 was noted for the first time

    The Potential Role of ORM2 in the Development of Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) is the third most common malignancy in the world. The risk of death is closely correlated to the stage of CRC at the time of primary diagnosis. Therefore, there is a compelling need for the identification of blood biomarkers that can enable early detection of CRC. We used a quantitative proteomic approach with isobaric labeling (iTRAQ) to examine changes in the plasma proteome of 10 patients with CRC compared to healthy volunteers. Enzyme-Linked Immunosorbnent Assay (ELISA) and Western blot were used for further validation. In our quantitative proteomics analysis, we detected 75 human plasma proteins with more than 95% confidence using iTRAQ labeling in conjunction with microQ-TOF MS. 9 up-regulated and 4 down-regulated proteins were observed in the CRC group. The ORM2 level in plasma was confirmed to be significantly elevated in patients suffering from CRC compared with the controls. ORM2 expression in CRC tissues was significantly increased compared with that in corresponding adjacent normal mucous tissues (P<0.001). ITRAQ together with Q-TOF/MS is a sensitive and reproducible technique of quantitative proteomics. Alteration in expression of ORM2 suggests that ORM2 could be used as a potential biomarker in the diagnosis of CRC

    Proteomics Mapping of Cord Blood Identifies Haptoglobin “Switch-On” Pattern as Biomarker of Early-Onset Neonatal Sepsis in Preterm Newborns

    Get PDF
    Intra-amniotic infection and/or inflammation (IAI) are important causes of preterm birth and early-onset neonatal sepsis (EONS). A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns.We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A proteomics discovery phase employing two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry identified 19 differentially-expressed proteins in cord blood of newborns with culture-confirmed EONS (n = 3) versus GA-matched controls (n = 3). Ontological classifications of the proteins included transfer/carrier, immunity/defense, protease/extracellular matrix. The 1(st)-level external validation conducted in the remaining 174 samples confirmed elevated haptoglobin and haptoglobin-related protein immunoreactivity (Hp&HpRP) in newborns with EONS (presumed and culture-confirmed) independent of GA at birth and birthweight (P<0.001). Western blot concurred in determining that EONS babies had conspicuous Hp&HpRP bands in cord blood ("switch-on pattern") as opposed to non-EONS newborns who had near-absent "switch-off pattern" (P<0.001). Fetal Hp phenotype independently impacted Hp&HpRP. A bayesian latent-class analysis (LCA) was further used for unbiased classification of all 180 cases based on probability of "antenatal IAI exposure" as latent variable. This was then subjected to 2(nd)-level validation against indicators of adverse short-term neonatal outcome. The optimal LCA algorithm combined Hp&HpRP switch pattern (most input), interleukin-6 and neonatal hematological indices yielding two non-overlapping newborn clusters with low (≤20%) versus high (≥70%) probability of IAI exposure. This approach reclassified ∼30% of clinical EONS diagnoses lowering the number needed to harm and increasing the odds ratios for several adverse outcomes including intra-ventricular hemorrhage.Antenatal exposure to IAI results in precocious switch-on of Hp&HpRP expression. As EONS biomarker, cord blood Hp&HpRP has potential to improve the selection of newborns for prompt and targeted treatment at birth

    Proteomic analysis of human reproductive fluids

    No full text
    Fertilization, fetal development, and delivery depend upon a coordinated series of events in the oocyte, the embryo, and the supporting tissues and fluids. Proteomic techniques which are capable of identifying and characterizing multiple proteins simultaneously have added new dimensions to the field of human reproduction. Application of these high throughput methodologies in pregnancy-related research has begun to provide a novel perspective on the biochemical pathways involved in pregnancy and its related disorders. Most of the existing research on human reproduction and gestation has focused on follicular fluid (FF) and amniotic fluid (AF). Proteome analysis of FF has yielded significant information relevant to oocyte maturation and quality. Studies performed on the protein content of AF cells and supernatant contributed to the comprehension of the underlying pathophysiology, clinical diagnosis of pregnancy-related digorders and identification of relevant disease biomarkers. Although proteome technologies in reproduction research are not as yet widely applied, characterization of the proteome of reproductive fluids can be expected to significantly improve maternal healthcare in the future. © 2007 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim
    corecore