4 research outputs found

    Obesity and brain structure in schizophrenia - ENIGMA study in 3021 individuals

    Get PDF
    Schizophrenia is frequently associated with obesity, which is linked with neurostructural alterations. Yet, we do not understand how the brain correlates of obesity map onto the brain changes in schizophrenia. We obtained MRI-derived brain cortical and subcortical measures and body mass index (BMI) from 1260 individuals with schizophrenia and 1761 controls from 12 independent research sites within the ENIGMA-Schizophrenia Working Group. We jointly modeled the statistical effects of schizophrenia and BMI using mixed effects. BMI was additively associated with structure of many of the same brain regions as schizophrenia, but the cortical and subcortical alterations in schizophrenia were more widespread and pronounced. Both BMI and schizophrenia were primarily associated with changes in cortical thickness, with fewer correlates in surface area. While, BMI was negatively associated with cortical thickness, the significant associations between BMI and surface area or subcortical volumes were positive. Lastly, the brain correlates of obesity were replicated among large studies and closely resembled neurostructural changes in major depressive disorders. We confirmed widespread associations between BMI and brain structure in individuals with schizophrenia. People with both obesity and schizophrenia showed more pronounced brain alterations than people with only one of these conditions. Obesity appears to be a relevant factor which could account for heterogeneity of brain imaging findings and for differences in brain imaging outcomes among people with schizophrenia

    Longitudinal assessment of ventricular volume trajectories in early-stage schizophrenia: evidence of both enlargement and shrinkage

    No full text
    Abstract Background Lateral ventricular enlargement represents a canonical morphometric finding in chronic patients with schizophrenia; however, longitudinal studies elucidating complex dynamic trajectories of ventricular volume change during critical early disease stages are sparse. Methods We measured lateral ventricular volumes in 113 first-episode schizophrenia patients (FES) at baseline visit (11.7 months after illness onset, SD = 12.3) and 128 age- and sex-matched healthy controls (HC) using 3T MRI. MRI was then repeated in both FES and HC one year later. Results Compared to controls, ventricular enlargement was identified in 18.6% of patients with FES (14.1% annual ventricular volume (VV) increase; 95%CI: 5.4; 33.1). The ventricular expansion correlated with the severity of PANSS-negative symptoms at one-year follow-up (p = 0.0078). Nevertheless, 16.8% of FES showed an opposite pattern of statistically significant ventricular shrinkage during ≈ one-year follow-up (-9.5% annual VV decrease; 95%CI: -23.7; -2.4). There were no differences in sex, illness duration, age of onset, duration of untreated psychosis, body mass index, the incidence of Schneiderian symptoms, or cumulative antipsychotic dose among the patient groups exhibiting ventricular enlargement, shrinkage, or no change in VV. Conclusion Both enlargement and ventricular shrinkage are equally present in the early stages of schizophrenia. The newly discovered early reduction of VV in a subgroup of patients emphasizes the need for further research to understand its mechanisms
    corecore